# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from torch.utils.data import DataLoader from lib.dataset.NormalDataset import NormalDataset # pytorch lightning related libs import pytorch_lightning as pl class NormalModule(pl.LightningDataModule): def __init__(self, cfg): super(NormalModule, self).__init__() self.cfg = cfg self.batch_size = self.cfg.batch_size self.data_size = {} def prepare_data(self): pass def setup(self, stage): self.train_dataset = NormalDataset(cfg=self.cfg, split="train") self.val_dataset = NormalDataset(cfg=self.cfg, split="val") self.test_dataset = NormalDataset(cfg=self.cfg, split="test") self.data_size = { "train": len(self.train_dataset), "val": len(self.val_dataset), } def train_dataloader(self): train_data_loader = DataLoader( self.train_dataset, batch_size=self.batch_size, shuffle=True, num_workers=self.cfg.num_threads, pin_memory=True, ) return train_data_loader def val_dataloader(self): val_data_loader = DataLoader( self.val_dataset, batch_size=self.batch_size, shuffle=False, num_workers=self.cfg.num_threads, pin_memory=True, ) return val_data_loader def val_dataloader(self): test_data_loader = DataLoader( self.test_dataset, batch_size=1, shuffle=False, num_workers=self.cfg.num_threads, pin_memory=True, ) return test_data_loader