import os import traceback import numpy as np import torch import trimesh from scipy import ndimage from skimage.measure import block_reduce from lib.common.libmesh.inside_mesh import check_mesh_contains from lib.common.libvoxelize.voxelize import voxelize_mesh_ # From Occupancy Networks, Mescheder et. al. CVPR'19 def make_3d_grid(bb_min, bb_max, shape): ''' Makes a 3D grid. Args: bb_min (tuple): bounding box minimum bb_max (tuple): bounding box maximum shape (tuple): output shape ''' size = shape[0] * shape[1] * shape[2] pxs = torch.linspace(bb_min[0], bb_max[0], shape[0]) pys = torch.linspace(bb_min[1], bb_max[1], shape[1]) pzs = torch.linspace(bb_min[2], bb_max[2], shape[2]) pxs = pxs.view(-1, 1, 1).expand(*shape).contiguous().view(size) pys = pys.view(1, -1, 1).expand(*shape).contiguous().view(size) pzs = pzs.view(1, 1, -1).expand(*shape).contiguous().view(size) p = torch.stack([pxs, pys, pzs], dim=1) return p class VoxelGrid: def __init__(self, data, loc=(0., 0., 0.), scale=1): assert (data.shape[0] == data.shape[1] == data.shape[2]) data = np.asarray(data, dtype=np.bool) loc = np.asarray(loc) self.data = data self.loc = loc self.scale = scale @classmethod def from_mesh(cls, mesh, resolution, loc=None, scale=None, method='ray'): bounds = mesh.bounds # Default location is center if loc is None: loc = (bounds[0] + bounds[1]) / 2 # Default scale, scales the mesh to [-0.45, 0.45]^3 if scale is None: scale = (bounds[1] - bounds[0]).max() / 0.9 loc = np.asarray(loc) scale = float(scale) # Transform mesh mesh = mesh.copy() mesh.apply_translation(-loc) mesh.apply_scale(1 / scale) # Apply method if method == 'ray': voxel_data = voxelize_ray(mesh, resolution) elif method == 'fill': voxel_data = voxelize_fill(mesh, resolution) voxels = cls(voxel_data, loc, scale) return voxels def down_sample(self, factor=2): if not (self.resolution % factor) == 0: raise ValueError('Resolution must be divisible by factor.') new_data = block_reduce(self.data, (factor, ) * 3, np.max) return VoxelGrid(new_data, self.loc, self.scale) def to_mesh(self): # Shorthand occ = self.data # Shape of voxel grid nx, ny, nz = occ.shape # Shape of corresponding occupancy grid grid_shape = (nx + 1, ny + 1, nz + 1) # Convert values to occupancies occ = np.pad(occ, 1, 'constant') # Determine if face present f1_r = (occ[:-1, 1:-1, 1:-1] & ~occ[1:, 1:-1, 1:-1]) f2_r = (occ[1:-1, :-1, 1:-1] & ~occ[1:-1, 1:, 1:-1]) f3_r = (occ[1:-1, 1:-1, :-1] & ~occ[1:-1, 1:-1, 1:]) f1_l = (~occ[:-1, 1:-1, 1:-1] & occ[1:, 1:-1, 1:-1]) f2_l = (~occ[1:-1, :-1, 1:-1] & occ[1:-1, 1:, 1:-1]) f3_l = (~occ[1:-1, 1:-1, :-1] & occ[1:-1, 1:-1, 1:]) f1 = f1_r | f1_l f2 = f2_r | f2_l f3 = f3_r | f3_l assert (f1.shape == (nx + 1, ny, nz)) assert (f2.shape == (nx, ny + 1, nz)) assert (f3.shape == (nx, ny, nz + 1)) # Determine if vertex present v = np.full(grid_shape, False) v[:, :-1, :-1] |= f1 v[:, :-1, 1:] |= f1 v[:, 1:, :-1] |= f1 v[:, 1:, 1:] |= f1 v[:-1, :, :-1] |= f2 v[:-1, :, 1:] |= f2 v[1:, :, :-1] |= f2 v[1:, :, 1:] |= f2 v[:-1, :-1, :] |= f3 v[:-1, 1:, :] |= f3 v[1:, :-1, :] |= f3 v[1:, 1:, :] |= f3 # Calculate indices for vertices n_vertices = v.sum() v_idx = np.full(grid_shape, -1) v_idx[v] = np.arange(n_vertices) # Vertices v_x, v_y, v_z = np.where(v) v_x = v_x / nx - 0.5 v_y = v_y / ny - 0.5 v_z = v_z / nz - 0.5 vertices = np.stack([v_x, v_y, v_z], axis=1) # Face indices f1_l_x, f1_l_y, f1_l_z = np.where(f1_l) f2_l_x, f2_l_y, f2_l_z = np.where(f2_l) f3_l_x, f3_l_y, f3_l_z = np.where(f3_l) f1_r_x, f1_r_y, f1_r_z = np.where(f1_r) f2_r_x, f2_r_y, f2_r_z = np.where(f2_r) f3_r_x, f3_r_y, f3_r_z = np.where(f3_r) faces_1_l = np.stack([ v_idx[f1_l_x, f1_l_y, f1_l_z], v_idx[f1_l_x, f1_l_y, f1_l_z + 1], v_idx[f1_l_x, f1_l_y + 1, f1_l_z + 1], v_idx[f1_l_x, f1_l_y + 1, f1_l_z], ], axis=1) faces_1_r = np.stack([ v_idx[f1_r_x, f1_r_y, f1_r_z], v_idx[f1_r_x, f1_r_y + 1, f1_r_z], v_idx[f1_r_x, f1_r_y + 1, f1_r_z + 1], v_idx[f1_r_x, f1_r_y, f1_r_z + 1], ], axis=1) faces_2_l = np.stack([ v_idx[f2_l_x, f2_l_y, f2_l_z], v_idx[f2_l_x + 1, f2_l_y, f2_l_z], v_idx[f2_l_x + 1, f2_l_y, f2_l_z + 1], v_idx[f2_l_x, f2_l_y, f2_l_z + 1], ], axis=1) faces_2_r = np.stack([ v_idx[f2_r_x, f2_r_y, f2_r_z], v_idx[f2_r_x, f2_r_y, f2_r_z + 1], v_idx[f2_r_x + 1, f2_r_y, f2_r_z + 1], v_idx[f2_r_x + 1, f2_r_y, f2_r_z], ], axis=1) faces_3_l = np.stack([ v_idx[f3_l_x, f3_l_y, f3_l_z], v_idx[f3_l_x, f3_l_y + 1, f3_l_z], v_idx[f3_l_x + 1, f3_l_y + 1, f3_l_z], v_idx[f3_l_x + 1, f3_l_y, f3_l_z], ], axis=1) faces_3_r = np.stack([ v_idx[f3_r_x, f3_r_y, f3_r_z], v_idx[f3_r_x + 1, f3_r_y, f3_r_z], v_idx[f3_r_x + 1, f3_r_y + 1, f3_r_z], v_idx[f3_r_x, f3_r_y + 1, f3_r_z], ], axis=1) faces = np.concatenate([ faces_1_l, faces_1_r, faces_2_l, faces_2_r, faces_3_l, faces_3_r, ], axis=0) vertices = self.loc + self.scale * vertices mesh = trimesh.Trimesh(vertices, faces, process=False) return mesh @property def resolution(self): assert (self.data.shape[0] == self.data.shape[1] == self.data.shape[2]) return self.data.shape[0] def contains(self, points): nx = self.resolution # Rescale bounding box to [-0.5, 0.5]^3 points = (points - self.loc) / self.scale # Discretize points to [0, nx-1]^3 points_i = ((points + 0.5) * nx).astype(np.int32) # i1, i2, i3 have sizes (batch_size, T) i1, i2, i3 = points_i[..., 0], points_i[..., 1], points_i[..., 2] # Only use indices inside bounding box mask = ((i1 >= 0) & (i2 >= 0) & (i3 >= 0) & (nx > i1) & (nx > i2) & (nx > i3)) # Prevent out of bounds error i1 = i1[mask] i2 = i2[mask] i3 = i3[mask] # Compute values, default value outside box is 0 occ = np.zeros(points.shape[:-1], dtype=np.bool) occ[mask] = self.data[i1, i2, i3] return occ def voxelize_ray(mesh, resolution): occ_surface = voxelize_surface(mesh, resolution) # TODO: use surface voxels here? occ_interior = voxelize_interior(mesh, resolution) occ = (occ_interior | occ_surface) return occ def voxelize_fill(mesh, resolution): bounds = mesh.bounds if (np.abs(bounds) >= 0.5).any(): raise ValueError('voxelize fill is only supported if mesh is inside [-0.5, 0.5]^3/') occ = voxelize_surface(mesh, resolution) occ = ndimage.morphology.binary_fill_holes(occ) return occ def voxelize_surface(mesh, resolution): vertices = mesh.vertices faces = mesh.faces vertices = (vertices + 0.5) * resolution face_loc = vertices[faces] occ = np.full((resolution, ) * 3, 0, dtype=np.int32) face_loc = face_loc.astype(np.float32) voxelize_mesh_(occ, face_loc) occ = (occ != 0) return occ def voxelize_interior(mesh, resolution): shape = (resolution, ) * 3 bb_min = (0.5, ) * 3 bb_max = (resolution - 0.5, ) * 3 # Create points. Add noise to break symmetry points = make_3d_grid(bb_min, bb_max, shape=shape).numpy() points = points + 0.1 * (np.random.rand(*points.shape) - 0.5) points = (points / resolution - 0.5) occ = check_mesh_contains(mesh, points)[0] occ = occ.reshape(shape) return occ def check_voxel_occupied(occupancy_grid): occ = occupancy_grid occupied = ( occ[..., :-1, :-1, :-1] & occ[..., :-1, :-1, 1:] & occ[..., :-1, 1:, :-1] & occ[..., :-1, 1:, 1:] & occ[..., 1:, :-1, :-1] & occ[..., 1:, :-1, 1:] & occ[..., 1:, 1:, :-1] & occ[..., 1:, 1:, 1:] ) return occupied def check_voxel_unoccupied(occupancy_grid): occ = occupancy_grid unoccupied = ~( occ[..., :-1, :-1, :-1] | occ[..., :-1, :-1, 1:] | occ[..., :-1, 1:, :-1] | occ[..., :-1, 1:, 1:] | occ[..., 1:, :-1, :-1] | occ[..., 1:, :-1, 1:] | occ[..., 1:, 1:, :-1] | occ[..., 1:, 1:, 1:] ) return unoccupied def check_voxel_boundary(occupancy_grid): occupied = check_voxel_occupied(occupancy_grid) unoccupied = check_voxel_unoccupied(occupancy_grid) return ~occupied & ~unoccupied def voxelize(in_path, res): try: filename = os.path.join(in_path, 'voxelization_{}.npy'.format(res)) if os.path.exists(filename): return mesh = trimesh.load(in_path + '/isosurf_scaled.off', process=False) occupancies = VoxelGrid.from_mesh(mesh, res, loc=[0, 0, 0], scale=1).data occupancies = np.reshape(occupancies, -1) if not occupancies.any(): raise ValueError('No empty voxel grids allowed.') occupancies = np.packbits(occupancies) np.save(filename, occupancies) except Exception as err: path = os.path.normpath(in_path) print('Error with {}: {}'.format(path, traceback.format_exc())) print('finished {}'.format(in_path))