# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de import logging import warnings warnings.filterwarnings("ignore") logging.getLogger("lightning").setLevel(logging.ERROR) logging.getLogger("trimesh").setLevel(logging.ERROR) import argparse import os import torch from termcolor import colored from tqdm.auto import tqdm from apps.IFGeo import IFGeo from apps.Normal import Normal from lib.common.BNI import BNI from lib.common.BNI_utils import save_normal_tensor from lib.common.config import cfg from lib.common.voxelize import VoxelGrid from lib.dataset.EvalDataset import EvalDataset from lib.dataset.Evaluator import Evaluator from lib.dataset.mesh_util import * torch.backends.cudnn.benchmark = True speed_analysis = False if __name__ == "__main__": if speed_analysis: import cProfile import pstats profiler = cProfile.Profile() profiler.enable() # loading cfg file parser = argparse.ArgumentParser() parser.add_argument("-gpu", "--gpu_device", type=int, default=0) parser.add_argument("-ifnet", action="store_true") parser.add_argument("-cfg", "--config", type=str, default="./configs/econ.yaml") args = parser.parse_args() # cfg read and merge cfg.merge_from_file(args.config) device = torch.device("cuda:0") cfg_test_list = [ "dataset.rotation_num", 3, "bni.use_smpl", ["hand"], "bni.use_ifnet", args.ifnet, "bni.cut_intersection", True, ] # # if w/ RenderPeople+CAPE # cfg_test_list += ["dataset.types", ["cape", "renderpeople"], "dataset.scales", [100.0, 1.0]] # if only w/ CAPE cfg_test_list += ["dataset.types", ["cape"], "dataset.scales", [100.0]] cfg.merge_from_list(cfg_test_list) cfg.freeze() # load normal model normal_net = Normal.load_from_checkpoint( cfg=cfg, checkpoint_path=cfg.normal_path, map_location=device, strict=False ) normal_net = normal_net.to(device) normal_net.netG.eval() print( colored( f"Resume Normal Estimator from {Format.start} {cfg.normal_path} {Format.end}", "green" ) ) # SMPLX object SMPLX_object = SMPLX() dataset = EvalDataset(cfg=cfg, device=device) evaluator = Evaluator(device=device) export_dir = osp.join(cfg.results_path, cfg.name, "IF-Net+" if cfg.bni.use_ifnet else "SMPL-X") print(colored(f"Dataset Size: {len(dataset)}", "green")) if cfg.bni.use_ifnet: # load IFGeo model ifnet = IFGeo.load_from_checkpoint( cfg=cfg, checkpoint_path=cfg.ifnet_path, map_location=device, strict=False ) ifnet = ifnet.to(device) ifnet.netG.eval() print(colored(f"Resume IF-Net+ from {Format.start} {cfg.ifnet_path} {Format.end}", "green")) print(colored(f"Complete with {Format.start} IF-Nets+ (Implicit) {Format.end}", "green")) else: print(colored(f"Complete with {Format.start} SMPL-X (Explicit) {Format.end}", "green")) pbar = tqdm(dataset) benchmark = {} for data in pbar: for key in data.keys(): if torch.is_tensor(data[key]): data[key] = data[key].unsqueeze(0).to(device) is_smplx = True if 'smplx_path' in data.keys() else False # filenames and makedirs current_name = f"{data['dataset']}-{data['subject']}-{data['rotation']:03d}" current_dir = osp.join(export_dir, data['dataset'], data['subject']) os.makedirs(current_dir, exist_ok=True) final_path = osp.join(current_dir, f"{current_name}_final.obj") if not osp.exists(final_path): in_tensor = data.copy() batch_smpl_verts = in_tensor["smpl_verts"].detach() batch_smpl_verts *= torch.tensor([1.0, -1.0, 1.0]).to(device) batch_smpl_faces = in_tensor["smpl_faces"].detach() in_tensor["depth_F"], in_tensor["depth_B"] = dataset.render_depth( batch_smpl_verts, batch_smpl_faces ) with torch.no_grad(): in_tensor["normal_F"], in_tensor["normal_B"] = normal_net.netG(in_tensor) smpl_mesh = trimesh.Trimesh( batch_smpl_verts.cpu().numpy()[0], batch_smpl_faces.cpu().numpy()[0] ) side_mesh = smpl_mesh.copy() face_mesh = smpl_mesh.copy() hand_mesh = smpl_mesh.copy() smplx_mesh = smpl_mesh.copy() # save normals, depths and masks BNI_dict = save_normal_tensor( in_tensor, 0, osp.join(current_dir, "BNI/param_dict"), cfg.bni.thickness if data['dataset'] == 'renderpeople' else 0.0, ) # BNI process BNI_object = BNI( dir_path=osp.join(current_dir, "BNI"), name=current_name, BNI_dict=BNI_dict, cfg=cfg.bni, device=device ) BNI_object.extract_surface(False) if is_smplx: side_mesh = apply_face_mask(side_mesh, ~SMPLX_object.smplx_eyeball_fid_mask) if cfg.bni.use_ifnet: # mesh completion via IF-net in_tensor.update( dataset.depth_to_voxel({ "depth_F": BNI_object.F_depth.unsqueeze(0).to(device), "depth_B": BNI_object.B_depth.unsqueeze(0).to(device) }) ) occupancies = VoxelGrid.from_mesh(side_mesh, cfg.vol_res, loc=[ 0, ] * 3, scale=2.0).data.transpose(2, 1, 0) occupancies = np.flip(occupancies, axis=1) in_tensor["body_voxels"] = torch.tensor(occupancies.copy() ).float().unsqueeze(0).to(device) with torch.no_grad(): sdf = ifnet.reconEngine(netG=ifnet.netG, batch=in_tensor) verts_IF, faces_IF = ifnet.reconEngine.export_mesh(sdf) if ifnet.clean_mesh_flag: verts_IF, faces_IF = clean_mesh(verts_IF, faces_IF) side_mesh_path = osp.join(current_dir, f"{current_name}_IF.obj") side_mesh = remesh_laplacian(trimesh.Trimesh(verts_IF, faces_IF), side_mesh_path) full_lst = [] if "hand" in cfg.bni.use_smpl: # only hands if is_smplx: hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smplx_mano_vertex_mask) else: hand_mesh = apply_vertex_mask(hand_mesh, SMPLX_object.smpl_mano_vertex_mask) # remove hand neighbor triangles BNI_object.F_B_trimesh = part_removal( BNI_object.F_B_trimesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand" ) side_mesh = part_removal( side_mesh, hand_mesh, cfg.bni.hand_thres, device, smplx_mesh, region="hand" ) # hand_mesh.export(osp.join(current_dir, f"{current_name}_hands.obj")) full_lst += [hand_mesh] full_lst += [BNI_object.F_B_trimesh] # initial side_mesh could be SMPLX or IF-net side_mesh = part_removal( side_mesh, sum(full_lst), 2e-2, device, smplx_mesh, region="", clean=False ) full_lst += [side_mesh] if cfg.bni.use_poisson: final_mesh = poisson( sum(full_lst), final_path, cfg.bni.poisson_depth, ) else: final_mesh = sum(full_lst) final_mesh.export(final_path) else: final_mesh = trimesh.load(final_path) # evaluation metric_path = osp.join(export_dir, "metric.npy") if osp.exists(metric_path): benchmark = np.load(metric_path, allow_pickle=True).item() if benchmark == {} or data["dataset"] not in benchmark.keys( ) or f"{data['subject']}-{data['rotation']}" not in benchmark[data["dataset"]]["subject"]: result_eval = { "verts_gt": data["verts"][0], "faces_gt": data["faces"][0], "verts_pr": final_mesh.vertices, "faces_pr": final_mesh.faces, "calib": data["calib"][0], } evaluator.set_mesh(result_eval, scale=False) chamfer, p2s = evaluator.calculate_chamfer_p2s(num_samples=1000) nc = evaluator.calculate_normal_consist(osp.join(current_dir, f"{current_name}_nc.png")) if data["dataset"] not in benchmark.keys(): benchmark[data["dataset"]] = { "chamfer": [chamfer.item()], "p2s": [p2s.item()], "nc": [nc.item()], "subject": [f"{data['subject']}-{data['rotation']}"], "total": 1, } else: benchmark[data["dataset"]]["chamfer"] += [chamfer.item()] benchmark[data["dataset"]]["p2s"] += [p2s.item()] benchmark[data["dataset"]]["nc"] += [nc.item()] benchmark[data["dataset"]]["subject"] += [f"{data['subject']}-{data['rotation']}"] benchmark[data["dataset"]]["total"] += 1 np.save(metric_path, benchmark, allow_pickle=True) else: subject_idx = benchmark[data["dataset"] ]["subject"].index(f"{data['subject']}-{data['rotation']}") chamfer = torch.tensor(benchmark[data["dataset"]]["chamfer"][subject_idx]) p2s = torch.tensor(benchmark[data["dataset"]]["p2s"][subject_idx]) nc = torch.tensor(benchmark[data["dataset"]]["nc"][subject_idx]) pbar.set_description( f"{current_name} | {chamfer.item():.3f} | {p2s.item():.3f} | {nc.item():.4f}" ) for dataset in benchmark.keys(): for metric in ["chamfer", "p2s", "nc"]: print( f"{dataset}-{metric}: {sum(benchmark[dataset][metric])/benchmark[dataset]['total']:.4f}" ) if cfg.bni.use_ifnet: print(colored("Finish evaluating on ECON_IF", "green")) else: print(colored("Finish evaluating of ECON_EX", "green")) if speed_analysis: profiler.disable() profiler.dump_stats(osp.join(export_dir, "econ.stats")) stats = pstats.Stats(osp.join(export_dir, "econ.stats")) stats.sort_stats("cumtime").print_stats(10)