""" Copyright (C) 2019 NVIDIA Corporation. Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu. BSD License. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ import torch import torch.nn as nn import functools import numpy as np import pytorch_lightning as pl from torchvision import models import torch.nn.functional as F ############################################################################### # Functions ############################################################################### def weights_init(m): classname = m.__class__.__name__ if classname.find("Conv") != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find("BatchNorm2d") != -1: m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def get_norm_layer(norm_type="instance"): if norm_type == "batch": norm_layer = functools.partial(nn.BatchNorm2d, affine=True) elif norm_type == "instance": norm_layer = functools.partial(nn.InstanceNorm2d, affine=False) else: raise NotImplementedError("normalization layer [%s] is not found" % norm_type) return norm_layer def define_G( input_nc, output_nc, ngf, netG, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm="instance", gpu_ids=[], last_op=nn.Tanh(), ): norm_layer = get_norm_layer(norm_type=norm) if netG == "global": netG = GlobalGenerator( input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, norm_layer, last_op=last_op, ) elif netG == "local": netG = LocalEnhancer( input_nc, output_nc, ngf, n_downsample_global, n_blocks_global, n_local_enhancers, n_blocks_local, norm_layer, ) elif netG == "encoder": netG = Encoder(input_nc, output_nc, ngf, n_downsample_global, norm_layer) else: raise ("generator not implemented!") # print(netG) if len(gpu_ids) > 0: assert torch.cuda.is_available() netG.cuda(gpu_ids[0]) netG.apply(weights_init) return netG def define_D( input_nc, ndf, n_layers_D, norm='instance', use_sigmoid=False, num_D=1, getIntermFeat=False, gpu_ids=[] ): norm_layer = get_norm_layer(norm_type=norm) netD = MultiscaleDiscriminator( input_nc, ndf, n_layers_D, norm_layer, use_sigmoid, num_D, getIntermFeat ) if len(gpu_ids) > 0: assert (torch.cuda.is_available()) netD.cuda(gpu_ids[0]) netD.apply(weights_init) return netD def print_network(net): if isinstance(net, list): net = net[0] num_params = 0 for param in net.parameters(): num_params += param.numel() print(net) print("Total number of parameters: %d" % num_params) ############################################################################## # Generator ############################################################################## class LocalEnhancer(pl.LightningModule): def __init__( self, input_nc, output_nc, ngf=32, n_downsample_global=3, n_blocks_global=9, n_local_enhancers=1, n_blocks_local=3, norm_layer=nn.BatchNorm2d, padding_type="reflect", ): super(LocalEnhancer, self).__init__() self.n_local_enhancers = n_local_enhancers ###### global generator model ##### ngf_global = ngf * (2**n_local_enhancers) model_global = GlobalGenerator( input_nc, output_nc, ngf_global, n_downsample_global, n_blocks_global, norm_layer, ).model model_global = [ model_global[i] for i in range(len(model_global) - 3) ] # get rid of final convolution layers self.model = nn.Sequential(*model_global) ###### local enhancer layers ##### for n in range(1, n_local_enhancers + 1): # downsample ngf_global = ngf * (2**(n_local_enhancers - n)) model_downsample = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf_global, kernel_size=7, padding=0), norm_layer(ngf_global), nn.ReLU(True), nn.Conv2d(ngf_global, ngf_global * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf_global * 2), nn.ReLU(True), ] # residual blocks model_upsample = [] for i in range(n_blocks_local): model_upsample += [ ResnetBlock(ngf_global * 2, padding_type=padding_type, norm_layer=norm_layer) ] # upsample model_upsample += [ nn.ConvTranspose2d( ngf_global * 2, ngf_global, kernel_size=3, stride=2, padding=1, output_padding=1, ), norm_layer(ngf_global), nn.ReLU(True), ] # final convolution if n == n_local_enhancers: model_upsample += [ nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh(), ] setattr(self, "model" + str(n) + "_1", nn.Sequential(*model_downsample)) setattr(self, "model" + str(n) + "_2", nn.Sequential(*model_upsample)) self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) def forward(self, input): # create input pyramid input_downsampled = [input] for i in range(self.n_local_enhancers): input_downsampled.append(self.downsample(input_downsampled[-1])) # output at coarest level output_prev = self.model(input_downsampled[-1]) # build up one layer at a time for n_local_enhancers in range(1, self.n_local_enhancers + 1): model_downsample = getattr(self, "model" + str(n_local_enhancers) + "_1") model_upsample = getattr(self, "model" + str(n_local_enhancers) + "_2") input_i = input_downsampled[self.n_local_enhancers - n_local_enhancers] output_prev = model_upsample(model_downsample(input_i) + output_prev) return output_prev class GlobalGenerator(pl.LightningModule): def __init__( self, input_nc, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d, padding_type="reflect", last_op=nn.Tanh(), ): assert n_blocks >= 0 super(GlobalGenerator, self).__init__() activation = nn.ReLU(True) model = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), activation, ] # downsample for i in range(n_downsampling): mult = 2**i model += [ nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), activation, ] # resnet blocks mult = 2**n_downsampling for i in range(n_blocks): model += [ ResnetBlock( ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer, ) ] # upsample for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [ nn.ConvTranspose2d( ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, ), norm_layer(int(ngf * mult / 2)), activation, ] model += [ nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), ] if last_op is not None: model += [last_op] self.model = nn.Sequential(*model) def forward(self, input): return self.model(input) # Defines the PatchGAN discriminator with the specified arguments. class NLayerDiscriminator(nn.Module): def __init__( self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, getIntermFeat=False ): super(NLayerDiscriminator, self).__init__() self.getIntermFeat = getIntermFeat self.n_layers = n_layers kw = 4 padw = int(np.ceil((kw - 1.0) / 2)) sequence = [ [ nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw), nn.LeakyReLU(0.2, True) ] ] nf = ndf for n in range(1, n_layers): nf_prev = nf nf = min(nf * 2, 512) sequence += [ [ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=2, padding=padw), norm_layer(nf), nn.LeakyReLU(0.2, True) ] ] nf_prev = nf nf = min(nf * 2, 512) sequence += [ [ nn.Conv2d(nf_prev, nf, kernel_size=kw, stride=1, padding=padw), norm_layer(nf), nn.LeakyReLU(0.2, True) ] ] sequence += [[nn.Conv2d(nf, 1, kernel_size=kw, stride=1, padding=padw)]] if use_sigmoid: sequence += [[nn.Sigmoid()]] if getIntermFeat: for n in range(len(sequence)): setattr(self, 'model' + str(n), nn.Sequential(*sequence[n])) else: sequence_stream = [] for n in range(len(sequence)): sequence_stream += sequence[n] self.model = nn.Sequential(*sequence_stream) def forward(self, input): if self.getIntermFeat: res = [input] for n in range(self.n_layers + 2): model = getattr(self, 'model' + str(n)) res.append(model(res[-1])) return res[1:] else: return self.model(input) class MultiscaleDiscriminator(pl.LightningModule): def __init__( self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False, num_D=3, getIntermFeat=False ): super(MultiscaleDiscriminator, self).__init__() self.num_D = num_D self.n_layers = n_layers self.getIntermFeat = getIntermFeat for i in range(num_D): netD = NLayerDiscriminator( input_nc, ndf, n_layers, norm_layer, use_sigmoid, getIntermFeat ) if getIntermFeat: for j in range(n_layers + 2): setattr( self, 'scale' + str(i) + '_layer' + str(j), getattr(netD, 'model' + str(j)) ) else: setattr(self, 'layer' + str(i), netD.model) self.downsample = nn.AvgPool2d(3, stride=2, padding=[1, 1], count_include_pad=False) def singleD_forward(self, model, input): if self.getIntermFeat: result = [input] for i in range(len(model)): result.append(model[i](result[-1])) return result[1:] else: return [model(input)] def forward(self, input): num_D = self.num_D result = [] input_downsampled = input.clone() for i in range(num_D): if self.getIntermFeat: model = [ getattr(self, 'scale' + str(num_D - 1 - i) + '_layer' + str(j)) for j in range(self.n_layers + 2) ] else: model = getattr(self, 'layer' + str(num_D - 1 - i)) result.append(self.singleD_forward(model, input_downsampled)) if i != (num_D - 1): input_downsampled = self.downsample(input_downsampled) return result # Define a resnet block class ResnetBlock(pl.LightningModule): def __init__(self, dim, padding_type, norm_layer, activation=nn.ReLU(True), use_dropout=False): super(ResnetBlock, self).__init__() self.conv_block = self.build_conv_block( dim, padding_type, norm_layer, activation, use_dropout ) def build_conv_block(self, dim, padding_type, norm_layer, activation, use_dropout): conv_block = [] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [ nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim), activation, ] if use_dropout: conv_block += [nn.Dropout(0.5)] p = 0 if padding_type == "reflect": conv_block += [nn.ReflectionPad2d(1)] elif padding_type == "replicate": conv_block += [nn.ReplicationPad2d(1)] elif padding_type == "zero": p = 1 else: raise NotImplementedError("padding [%s] is not implemented" % padding_type) conv_block += [nn.Conv2d(dim, dim, kernel_size=3, padding=p), norm_layer(dim)] return nn.Sequential(*conv_block) def forward(self, x): out = x + self.conv_block(x) return out class Encoder(pl.LightningModule): def __init__(self, input_nc, output_nc, ngf=32, n_downsampling=4, norm_layer=nn.BatchNorm2d): super(Encoder, self).__init__() self.output_nc = output_nc model = [ nn.ReflectionPad2d(3), nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0), norm_layer(ngf), nn.ReLU(True), ] # downsample for i in range(n_downsampling): mult = 2**i model += [ nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1), norm_layer(ngf * mult * 2), nn.ReLU(True), ] # upsample for i in range(n_downsampling): mult = 2**(n_downsampling - i) model += [ nn.ConvTranspose2d( ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1, ), norm_layer(int(ngf * mult / 2)), nn.ReLU(True), ] model += [ nn.ReflectionPad2d(3), nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), nn.Tanh(), ] self.model = nn.Sequential(*model) def forward(self, input, inst): outputs = self.model(input) # instance-wise average pooling outputs_mean = outputs.clone() inst_list = np.unique(inst.cpu().numpy().astype(int)) for i in inst_list: for b in range(input.size()[0]): indices = (inst[b:b + 1] == int(i)).nonzero() # n x 4 for j in range(self.output_nc): output_ins = outputs[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2], indices[:, 3], ] mean_feat = torch.mean(output_ins).expand_as(output_ins) outputs_mean[indices[:, 0] + b, indices[:, 1] + j, indices[:, 2], indices[:, 3], ] = mean_feat return outputs_mean class Vgg19(nn.Module): def __init__(self, requires_grad=False): super(Vgg19, self).__init__() vgg_pretrained_features = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 30): self.slice5.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False def forward(self, X): h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5(h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out class VGG19FeatLayer(nn.Module): def __init__(self): super(VGG19FeatLayer, self).__init__() self.vgg19 = models.vgg19(weights=models.VGG19_Weights.DEFAULT).features.eval() self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1)) self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1)) def forward(self, x): out = {} x = x - self.mean x = x / self.std ci = 1 ri = 0 for layer in self.vgg19.children(): if isinstance(layer, nn.Conv2d): ri += 1 name = 'conv{}_{}'.format(ci, ri) elif isinstance(layer, nn.ReLU): ri += 1 name = 'relu{}_{}'.format(ci, ri) layer = nn.ReLU(inplace=False) elif isinstance(layer, nn.MaxPool2d): ri = 0 name = 'pool_{}'.format(ci) ci += 1 elif isinstance(layer, nn.BatchNorm2d): name = 'bn_{}'.format(ci) else: raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__)) x = layer(x) out[name] = x # print([x for x in out]) return out class VGGLoss(pl.LightningModule): def __init__(self): super(VGGLoss, self).__init__() self.vgg = Vgg19().eval() self.criterion = nn.L1Loss() self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss class GANLoss(pl.LightningModule): def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0): super(GANLoss, self).__init__() self.real_label = target_real_label self.fake_label = target_fake_label self.real_label_var = None self.fake_label_var = None self.tensor = torch.cuda.FloatTensor if use_lsgan: self.loss = nn.MSELoss() else: self.loss = nn.BCELoss() def get_target_tensor(self, input, target_is_real): target_tensor = None if target_is_real: create_label = ( (self.real_label_var is None) or (self.real_label_var.numel() != input.numel()) ) if create_label: real_tensor = self.tensor(input.size()).fill_(self.real_label) self.real_label_var = real_tensor self.real_label_var.requires_grad = False target_tensor = self.real_label_var else: create_label = ( (self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel()) ) if create_label: fake_tensor = self.tensor(input.size()).fill_(self.fake_label) self.fake_label_var = fake_tensor self.fake_label_var.requires_grad = False target_tensor = self.fake_label_var return target_tensor def __call__(self, input, target_is_real): if isinstance(input[0], list): loss = 0 for input_i in input: pred = input_i[-1] target_tensor = self.get_target_tensor(pred, target_is_real) loss += self.loss(pred, target_tensor) return loss else: target_tensor = self.get_target_tensor(input[-1], target_is_real) return self.loss(input[-1], target_tensor) class IDMRFLoss(pl.LightningModule): def __init__(self, featlayer=VGG19FeatLayer): super(IDMRFLoss, self).__init__() self.featlayer = featlayer() self.feat_style_layers = {'relu3_2': 1.0, 'relu4_2': 1.0} self.feat_content_layers = {'relu4_2': 1.0} self.bias = 1.0 self.nn_stretch_sigma = 0.5 self.lambda_style = 1.0 self.lambda_content = 1.0 def sum_normalize(self, featmaps): reduce_sum = torch.sum(featmaps, dim=1, keepdim=True) return featmaps / reduce_sum def patch_extraction(self, featmaps): patch_size = 1 patch_stride = 1 patches_as_depth_vectors = featmaps.unfold(2, patch_size, patch_stride).unfold( 3, patch_size, patch_stride ) self.patches_OIHW = patches_as_depth_vectors.permute(0, 2, 3, 1, 4, 5) dims = self.patches_OIHW.size() self.patches_OIHW = self.patches_OIHW.view(-1, dims[3], dims[4], dims[5]) return self.patches_OIHW def compute_relative_distances(self, cdist): epsilon = 1e-5 div = torch.min(cdist, dim=1, keepdim=True)[0] relative_dist = cdist / (div + epsilon) return relative_dist def exp_norm_relative_dist(self, relative_dist): scaled_dist = relative_dist dist_before_norm = torch.exp((self.bias - scaled_dist) / self.nn_stretch_sigma) self.cs_NCHW = self.sum_normalize(dist_before_norm) return self.cs_NCHW def mrf_loss(self, gen, tar): meanT = torch.mean(tar, 1, keepdim=True) gen_feats, tar_feats = gen - meanT, tar - meanT gen_feats_norm = torch.norm(gen_feats, p=2, dim=1, keepdim=True) tar_feats_norm = torch.norm(tar_feats, p=2, dim=1, keepdim=True) gen_normalized = gen_feats / gen_feats_norm tar_normalized = tar_feats / tar_feats_norm cosine_dist_l = [] BatchSize = tar.size(0) for i in range(BatchSize): tar_feat_i = tar_normalized[i:i + 1, :, :, :] gen_feat_i = gen_normalized[i:i + 1, :, :, :] patches_OIHW = self.patch_extraction(tar_feat_i) cosine_dist_i = F.conv2d(gen_feat_i, patches_OIHW) cosine_dist_l.append(cosine_dist_i) cosine_dist = torch.cat(cosine_dist_l, dim=0) cosine_dist_zero_2_one = -(cosine_dist - 1) / 2 relative_dist = self.compute_relative_distances(cosine_dist_zero_2_one) rela_dist = self.exp_norm_relative_dist(relative_dist) dims_div_mrf = rela_dist.size() k_max_nc = torch.max(rela_dist.view(dims_div_mrf[0], dims_div_mrf[1], -1), dim=2)[0] div_mrf = torch.mean(k_max_nc, dim=1) div_mrf_sum = -torch.log(div_mrf) div_mrf_sum = torch.sum(div_mrf_sum) return div_mrf_sum def forward(self, gen, tar): ## gen: [bz,3,h,w] rgb [0,1] gen_vgg_feats = self.featlayer(gen) tar_vgg_feats = self.featlayer(tar) style_loss_list = [ self.feat_style_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_style_layers ] self.style_loss = functools.reduce(lambda x, y: x + y, style_loss_list) * self.lambda_style content_loss_list = [ self.feat_content_layers[layer] * self.mrf_loss(gen_vgg_feats[layer], tar_vgg_feats[layer]) for layer in self.feat_content_layers ] self.content_loss = functools.reduce( lambda x, y: x + y, content_loss_list ) * self.lambda_content return self.style_loss + self.content_loss