# Windows installation tutorial Another [issue#16](https://github.com/YuliangXiu/ECON/issues/16) shows the whole process to deploy ECON on *Windows* ## Dependencies and Installation - Use [Anaconda](https://www.anaconda.com/products/distribution) - NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) - [Wget for Windows](https://eternallybored.org/misc/wget/1.21.3/64/wget.exe) - Create a new folder on your C drive and rename it "wget" and move the downloaded "wget.exe" over there. - Add the path to your wget folder to your system environment variables at `Environment Variables > System Variables Path > Edit environment variable` ![image](https://user-images.githubusercontent.com/34035011/210986038-39dbb7a1-12ef-4be9-9af4-5f658c6beb65.png) - Install [Git for Windows 64-bit](https://git-scm.com/download/win) - [Visual Studio Community 2022](https://visualstudio.microsoft.com/) (Make sure to check all the boxes as shown in the image below) ![image](https://user-images.githubusercontent.com/34035011/210983023-4e5a0024-68f0-4adb-8089-6ff598aec220.PNG) ## Getting started Start by cloning the repo: ```bash git clone https://github.com/yuliangxiu/ECON.git cd ECON ``` ## Environment - Windows 10 / 11 - **CUDA=11.4** - Python = 3.8 - PyTorch >= 1.12.1 (official [Get Started](https://pytorch.org/get-started/locally/)) - Cupy >= 11.3.0 (offcial [Installation](https://docs.cupy.dev/en/stable/install.html#installing-cupy-from-pypi)) - PyTorch3D (official [INSTALL.md](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md), recommend [install-from-local-clone](https://github.com/facebookresearch/pytorch3d/blob/main/INSTALL.md#2-install-from-a-local-clone)) ```bash # install required packages cd ECON conda env create -f environment-windows.yaml conda activate econ # install pytorch and cupy pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113 pip install -r requirements-win.txt pip install cupy-cuda11x ## If you have a RTX 30 series GPU then run this cmd below for installing neural_voxelization_layer pip install git+https://github.com/YuliangXiu/neural_voxelization_layer.git ## If you have GPU below RTX 30 series then you gotta build neural_voxelization_layer (steps below) git clone https://github.com/justinjohn0306/neural_voxelization_layer.git cd neural_voxelization_layer python setup install cd.. # install libmesh & libvoxelize cd lib/common/libmesh python setup.py build_ext --inplace cd ../libvoxelize python setup.py build_ext --inplace ``` ## Register at [ICON's website](https://icon.is.tue.mpg.de/) ![Register](../assets/register.png) Required: - [SMPL](http://smpl.is.tue.mpg.de/): SMPL Model (Male, Female) - [SMPL-X](http://smpl-x.is.tue.mpg.de/): SMPL-X Model, used for training - [SMPLIFY](http://smplify.is.tue.mpg.de/): SMPL Model (Neutral) - [PIXIE](https://icon.is.tue.mpg.de/user.php): PIXIE SMPL-X estimator :warning: Click **Register now** on all dependencies, then you can download them all with **ONE** account. ## Downloading required models and extra data (make sure to install git and wget for windows for this to work) ```bash cd ECON bash fetch_data.sh # requires username and password ``` ## Citation :+1: Please consider citing these awesome HPS approaches: PyMAF-X, PIXIE ``` @article{pymafx2022, title={PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular Images}, author={Zhang, Hongwen and Tian, Yating and Zhang, Yuxiang and Li, Mengcheng and An, Liang and Sun, Zhenan and Liu, Yebin}, journal={arXiv preprint arXiv:2207.06400}, year={2022} } @inproceedings{PIXIE:2021, title={Collaborative Regression of Expressive Bodies using Moderation}, author={Yao Feng and Vasileios Choutas and Timo Bolkart and Dimitrios Tzionas and Michael J. Black}, booktitle={International Conference on 3D Vision (3DV)}, year={2021} } ```