# Written by Roy Tseng # # Based on: # -------------------------------------------------------- # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import cv2 import numpy as np import os import pycocotools.mask as mask_util import math import torchvision from .colormap import colormap from .keypoints import get_keypoints from .imutils import normalize_2d_kp # Use a non-interactive backend import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.patches import Polygon from mpl_toolkits.mplot3d import Axes3D from skimage.transform import resize plt.rcParams['pdf.fonttype'] = 42 # For editing in Adobe Illustrator _GRAY = (218, 227, 218) _GREEN = (18, 127, 15) _WHITE = (255, 255, 255) def get_colors(): colors = { 'pink': np.array([197, 27, 125]), # L lower leg 'light_pink': np.array([233, 163, 201]), # L upper leg 'light_green': np.array([161, 215, 106]), # L lower arm 'green': np.array([77, 146, 33]), # L upper arm 'red': np.array([215, 48, 39]), # head 'light_red': np.array([252, 146, 114]), # head 'light_orange': np.array([252, 141, 89]), # chest 'purple': np.array([118, 42, 131]), # R lower leg 'light_purple': np.array([175, 141, 195]), # R upper 'light_blue': np.array([145, 191, 219]), # R lower arm 'blue': np.array([69, 117, 180]), # R upper arm 'gray': np.array([130, 130, 130]), # 'white': np.array([255, 255, 255]), # } return colors def kp_connections(keypoints): kp_lines = [ [keypoints.index('left_eye'), keypoints.index('right_eye')], [keypoints.index('left_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('right_ear')], [keypoints.index('left_eye'), keypoints.index('left_ear')], [keypoints.index('right_shoulder'), keypoints.index('right_elbow')], [keypoints.index('right_elbow'), keypoints.index('right_wrist')], [keypoints.index('left_shoulder'), keypoints.index('left_elbow')], [keypoints.index('left_elbow'), keypoints.index('left_wrist')], [keypoints.index('right_hip'), keypoints.index('right_knee')], [keypoints.index('right_knee'), keypoints.index('right_ankle')], [keypoints.index('left_hip'), keypoints.index('left_knee')], [keypoints.index('left_knee'), keypoints.index('left_ankle')], [keypoints.index('right_shoulder'), keypoints.index('left_shoulder')], [keypoints.index('right_hip'), keypoints.index('left_hip')], ] return kp_lines def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps): """Convert from the class boxes/segms/keyps format generated by the testing code. """ box_list = [b for b in cls_boxes if len(b) > 0] if len(box_list) > 0: boxes = np.concatenate(box_list) else: boxes = None if cls_segms is not None: segms = [s for slist in cls_segms for s in slist] else: segms = None if cls_keyps is not None: keyps = [k for klist in cls_keyps for k in klist] else: keyps = None classes = [] for j in range(len(cls_boxes)): classes += [j] * len(cls_boxes[j]) return boxes, segms, keyps, classes def vis_bbox_opencv(img, bbox, thick=1): """Visualizes a bounding box.""" (x0, y0, w, h) = bbox x1, y1 = int(x0 + w), int(y0 + h) x0, y0 = int(x0), int(y0) cv2.rectangle(img, (x0, y0), (x1, y1), _GREEN, thickness=thick) return img def get_class_string(class_index, score, dataset): class_text = dataset.classes[class_index] if dataset is not None else \ 'id{:d}'.format(class_index) return class_text + ' {:0.2f}'.format(score).lstrip('0') def vis_one_image( im, im_name, output_dir, boxes, segms=None, keypoints=None, body_uv=None, thresh=0.9, kp_thresh=2, dpi=200, box_alpha=0.0, dataset=None, show_class=False, ext='pdf' ): """Visual debugging of detections.""" if not os.path.exists(output_dir): os.makedirs(output_dir) if isinstance(boxes, list): boxes, segms, keypoints, classes = convert_from_cls_format(boxes, segms, keypoints) if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh: return if segms is not None: masks = mask_util.decode(segms) color_list = colormap(rgb=True) / 255 dataset_keypoints, _ = get_keypoints() kp_lines = kp_connections(dataset_keypoints) cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] fig = plt.figure(frameon=False) fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.axis('off') fig.add_axes(ax) ax.imshow(im) # Display in largest to smallest order to reduce occlusion areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) sorted_inds = np.argsort(-areas) mask_color_id = 0 for i in sorted_inds: bbox = boxes[i, :4] score = boxes[i, -1] if score < thresh: continue print(dataset.classes[classes[i]], score) # show box (off by default, box_alpha=0.0) ax.add_patch( plt.Rectangle( (bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=0.5, alpha=box_alpha ) ) if show_class: ax.text( bbox[0], bbox[1] - 2, get_class_string(classes[i], score, dataset), fontsize=3, family='serif', bbox=dict(facecolor='g', alpha=0.4, pad=0, edgecolor='none'), color='white' ) # show mask if segms is not None and len(segms) > i: img = np.ones(im.shape) color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 w_ratio = .4 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio for c in range(3): img[:, :, c] = color_mask[c] e = masks[:, :, i] _, contour, hier = cv2.findContours(e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) for c in contour: polygon = Polygon( c.reshape((-1, 2)), fill=True, facecolor=color_mask, edgecolor='w', linewidth=1.2, alpha=0.5 ) ax.add_patch(polygon) # show keypoints if keypoints is not None and len(keypoints) > i: kps = keypoints[i] plt.autoscale(False) for l in range(len(kp_lines)): i1 = kp_lines[l][0] i2 = kp_lines[l][1] if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: x = [kps[0, i1], kps[0, i2]] y = [kps[1, i1], kps[1, i2]] line = ax.plot(x, y) plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7) if kps[2, i1] > kp_thresh: ax.plot(kps[0, i1], kps[1, i1], '.', color=colors[l], markersize=3.0, alpha=0.7) if kps[2, i2] > kp_thresh: ax.plot(kps[0, i2], kps[1, i2], '.', color=colors[l], markersize=3.0, alpha=0.7) # add mid shoulder / mid hip for better visualization mid_shoulder = ( kps[:2, dataset_keypoints.index('right_shoulder')] + kps[:2, dataset_keypoints.index('left_shoulder')] ) / 2.0 sc_mid_shoulder = np.minimum( kps[2, dataset_keypoints.index('right_shoulder')], kps[2, dataset_keypoints.index('left_shoulder')] ) mid_hip = ( kps[:2, dataset_keypoints.index('right_hip')] + kps[:2, dataset_keypoints.index('left_hip')] ) / 2.0 sc_mid_hip = np.minimum( kps[2, dataset_keypoints.index('right_hip')], kps[2, dataset_keypoints.index('left_hip')] ) if ( sc_mid_shoulder > kp_thresh and kps[2, dataset_keypoints.index('nose')] > kp_thresh ): x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]] y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]] line = ax.plot(x, y) plt.setp(line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7) if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: x = [mid_shoulder[0], mid_hip[0]] y = [mid_shoulder[1], mid_hip[1]] line = ax.plot(x, y) plt.setp(line, color=colors[len(kp_lines) + 1], linewidth=1.0, alpha=0.7) # DensePose Visualization Starts!! ## Get full IUV image out if body_uv is not None and len(body_uv) > 1: IUV_fields = body_uv[1] # All_Coords = np.zeros(im.shape) All_inds = np.zeros([im.shape[0], im.shape[1]]) K = 26 ## inds = np.argsort(boxes[:, 4]) ## for i, ind in enumerate(inds): entry = boxes[ind, :] if entry[4] > 0.65: entry = entry[0:4].astype(int) #### output = IUV_fields[ind] #### All_Coords_Old = All_Coords[entry[1]:entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2], :] All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2, 0])[All_Coords_Old == 0] All_Coords[entry[1]:entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2], :] = All_Coords_Old ### CurrentMask = (output[0, :, :] > 0).astype(np.float32) All_inds_old = All_inds[entry[1]:entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i All_inds[entry[1]:entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old # All_Coords[:, :, 1:3] = 255. * All_Coords[:, :, 1:3] All_Coords[All_Coords > 255] = 255. All_Coords = All_Coords.astype(np.uint8) All_inds = All_inds.astype(np.uint8) # IUV_SaveName = os.path.basename(im_name).split('.')[0] + '_IUV.png' INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png' cv2.imwrite(os.path.join(output_dir, '{}'.format(IUV_SaveName)), All_Coords) cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds) print('IUV written to: ', os.path.join(output_dir, '{}'.format(IUV_SaveName))) ### ### DensePose Visualization Done!! # output_name = os.path.basename(im_name) + '.' + ext fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi) plt.close('all') # SMPL Visualization if body_uv is not None and len(body_uv) > 2: smpl_fields = body_uv[2] # All_Coords = np.zeros(im.shape) # All_inds = np.zeros([im.shape[0], im.shape[1]]) K = 26 ## inds = np.argsort(boxes[:, 4]) ## for i, ind in enumerate(inds): entry = boxes[ind, :] if entry[4] > 0.75: entry = entry[0:4].astype(int) center_roi = [(entry[2] + entry[0]) / 2., (entry[3] + entry[1]) / 2.] #### output, center_out = smpl_fields[ind] #### x1_img = max(int(center_roi[0] - center_out[0]), 0) y1_img = max(int(center_roi[1] - center_out[1]), 0) x2_img = min(int(center_roi[0] - center_out[0]) + output.shape[2], im.shape[1]) y2_img = min(int(center_roi[1] - center_out[1]) + output.shape[1], im.shape[0]) All_Coords_Old = All_Coords[y1_img:y2_img, x1_img:x2_img, :] x1_out = max(int(center_out[0] - center_roi[0]), 0) y1_out = max(int(center_out[1] - center_roi[1]), 0) x2_out = x1_out + (x2_img - x1_img) y2_out = y1_out + (y2_img - y1_img) output = output[:, y1_out:y2_out, x1_out:x2_out] # All_Coords_Old = All_Coords[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2], # :] All_Coords_Old[All_Coords_Old == 0] = output.transpose([1, 2, 0])[All_Coords_Old == 0] All_Coords[y1_img:y2_img, x1_img:x2_img, :] = All_Coords_Old ### # CurrentMask = (output[0, :, :] > 0).astype(np.float32) # All_inds_old = All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] # All_inds_old[All_inds_old == 0] = CurrentMask[All_inds_old == 0] * i # All_inds[entry[1]: entry[1] + output.shape[1], entry[0]:entry[0] + output.shape[2]] = All_inds_old # All_Coords = 255. * All_Coords All_Coords[All_Coords > 255] = 255. All_Coords = All_Coords.astype(np.uint8) image_stacked = im[:, :, ::-1] image_stacked[All_Coords > 20] = All_Coords[All_Coords > 20] # All_inds = All_inds.astype(np.uint8) # SMPL_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPL.png' smpl_image_SaveName = os.path.basename(im_name).split('.')[0] + '_SMPLimg.png' # INDS_SaveName = os.path.basename(im_name).split('.')[0] + '_INDS.png' cv2.imwrite(os.path.join(output_dir, '{}'.format(SMPL_SaveName)), All_Coords) cv2.imwrite(os.path.join(output_dir, '{}'.format(smpl_image_SaveName)), image_stacked) # cv2.imwrite(os.path.join(output_dir, '{}'.format(INDS_SaveName)), All_inds) print('SMPL written to: ', os.path.join(output_dir, '{}'.format(SMPL_SaveName))) ### ### SMPL Visualization Done!! # output_name = os.path.basename(im_name) + '.' + ext fig.savefig(os.path.join(output_dir, '{}'.format(output_name)), dpi=dpi) plt.close('all') def vis_batch_image_with_joints( batch_image, batch_joints, batch_joints_vis, file_name=None, nrow=8, padding=0, pad_value=1, add_text=True ): ''' batch_image: [batch_size, channel, height, width] batch_joints: [batch_size, num_joints, 3], batch_joints_vis: [batch_size, num_joints, 1], } ''' grid = torchvision.utils.make_grid(batch_image, nrow, padding, True, pad_value=pad_value) ndarr = grid.mul(255).clamp(0, 255).byte().permute(1, 2, 0).cpu().numpy() ndarr = ndarr.copy() nmaps = batch_image.size(0) xmaps = min(nrow, nmaps) ymaps = int(math.ceil(float(nmaps) / xmaps)) height = int(batch_image.size(2) + padding) width = int(batch_image.size(3) + padding) k = 0 for y in range(ymaps): for x in range(xmaps): if k >= nmaps: break joints = batch_joints[k] joints_vis = batch_joints_vis[k] flip = 1 count = -1 for joint, joint_vis in zip(joints, joints_vis): joint[0] = x * width + padding + joint[0] joint[1] = y * height + padding + joint[1] flip *= -1 count += 1 if joint_vis[0]: try: if flip > 0: cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [255, 0, 0], -1) else: cv2.circle(ndarr, (int(joint[0]), int(joint[1])), 0, [0, 255, 0], -1) if add_text: cv2.putText( ndarr, str(count), (int(joint[0]), int(joint[1])), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1 ) except Exception as e: print(e) k = k + 1 return ndarr def vis_img_3Djoint(batch_img, joints, pairs=None, joint_group=None): n_sample = joints.shape[0] max_show = 2 if n_sample > max_show: if batch_img is not None: batch_img = batch_img[:max_show] joints = joints[:max_show] n_sample = max_show color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484'] # color = ['g', 'b', 'r'] def m_l_r(idx): if joint_group is None: return 1 for i in range(len(joint_group)): if idx in joint_group[i]: return i for i in range(n_sample): if batch_img is not None: # ax_img = plt.subplot(n_sample, 2, i * 2 + 1) ax_img = plt.subplot(2, n_sample, i + 1) img_np = batch_img[i].cpu().numpy() img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C ax_img.imshow(img_np) ax_img.set_axis_off() ax_pred = plt.subplot(2, n_sample, n_sample + i + 1, projection='3d') else: ax_pred = plt.subplot(1, n_sample, i + 1, projection='3d') plot_kps = joints[i] if plot_kps.shape[1] > 2: if joint_group is None: ax_pred.scatter(plot_kps[:, 2], plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.') ax_pred.scatter( plot_kps[0, 2], plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.' ) else: for j in range(len(joint_group)): ax_pred.scatter( plot_kps[joint_group[j], 2], plot_kps[joint_group[j], 0], plot_kps[joint_group[j], 1], s=30, c=color[j], marker='s' ) if pairs is not None: for p in pairs: ax_pred.plot( plot_kps[p, 2], plot_kps[p, 0], plot_kps[p, 1], c=color[m_l_r(p[1])], linewidth=2 ) # ax_pred.set_axis_off() ax_pred.set_aspect('equal') set_axes_equal(ax_pred) ax_pred.xaxis.set_ticks([]) ax_pred.yaxis.set_ticks([]) ax_pred.zaxis.set_ticks([]) def vis_img_2Djoint(batch_img, joints, pairs=None, joint_group=None): n_sample = joints.shape[0] max_show = 2 if n_sample > max_show: if batch_img is not None: batch_img = batch_img[:max_show] joints = joints[:max_show] n_sample = max_show color = ['#00B0F0', '#00B050', '#DC6464', '#207070', '#BC4484'] # color = ['g', 'b', 'r'] def m_l_r(idx): if joint_group is None: return 1 for i in range(len(joint_group)): if idx in joint_group[i]: return i for i in range(n_sample): if batch_img is not None: # ax_img = plt.subplot(n_sample, 2, i * 2 + 1) ax_img = plt.subplot(2, n_sample, i + 1) img_np = batch_img[i].cpu().numpy() img_np = np.transpose(img_np, (1, 2, 0)) # H*W*C ax_img.imshow(img_np) ax_img.set_axis_off() ax_pred = plt.subplot(2, n_sample, n_sample + i + 1) else: ax_pred = plt.subplot(1, n_sample, i + 1) plot_kps = joints[i] if plot_kps.shape[1] > 1: if joint_group is None: ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=300, c='#00B0F0', marker='.') # ax_pred.scatter(plot_kps[:, 0], plot_kps[:, 1], s=10, marker='.') # ax_pred.scatter(plot_kps[0, 0], plot_kps[0, 1], s=10, c='g', marker='.') else: for j in range(len(joint_group)): ax_pred.scatter( plot_kps[joint_group[j], 0], plot_kps[joint_group[j], 1], s=100, c=color[j], marker='o' ) if pairs is not None: for p in pairs: ax_pred.plot( plot_kps[p, 0], plot_kps[p, 1], c=color[m_l_r(p[1])], linestyle=':', linewidth=3 ) ax_pred.set_axis_off() ax_pred.set_aspect('equal') ax_pred.axis('equal') # set_axes_equal(ax_pred) ax_pred.xaxis.set_ticks([]) ax_pred.yaxis.set_ticks([]) # ax_pred.zaxis.set_ticks([]) def draw_skeleton(image, kp_2d, dataset='common', unnormalize=True, thickness=2): if unnormalize: kp_2d[:, :2] = normalize_2d_kp(kp_2d[:, :2], 224, inv=True) kp_2d[:, 2] = kp_2d[:, 2] > 0.3 kp_2d = np.array(kp_2d, dtype=int) rcolor = get_colors()['red'].tolist() pcolor = get_colors()['green'].tolist() lcolor = get_colors()['blue'].tolist() common_lr = [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0] for idx, pt in enumerate(kp_2d): if pt[2] > 0: # if visible if idx % 2 == 0: color = rcolor else: color = pcolor cv2.circle(image, (pt[0], pt[1]), 4, color, -1) # cv2.putText(image, f'{idx}', (pt[0]+1, pt[1]), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 255, 0)) if dataset == 'common' and len(kp_2d) != 15: return image skeleton = eval(f'kp_utils.get_{dataset}_skeleton')() for i, (j1, j2) in enumerate(skeleton): if kp_2d[j1, 2] > 0 and kp_2d[j2, 2] > 0: # if visible if dataset == 'common': color = rcolor if common_lr[i] == 0 else lcolor else: color = lcolor if i % 2 == 0 else rcolor pt1, pt2 = (kp_2d[j1, 0], kp_2d[j1, 1]), (kp_2d[j2, 0], kp_2d[j2, 1]) cv2.line(image, pt1=pt1, pt2=pt2, color=color, thickness=thickness) return image # https://stackoverflow.com/questions/13685386/matplotlib-equal-unit-length-with-equal-aspect-ratio-z-axis-is-not-equal-to def set_axes_equal(ax): '''Make axes of 3D plot have equal scale so that spheres appear as spheres, cubes as cubes, etc.. This is one possible solution to Matplotlib's ax.set_aspect('equal') and ax.axis('equal') not working for 3D. Input ax: a matplotlib axis, e.g., as output from plt.gca(). ''' x_limits = ax.get_xlim3d() y_limits = ax.get_ylim3d() z_limits = ax.get_zlim3d() x_range = abs(x_limits[1] - x_limits[0]) x_middle = np.mean(x_limits) y_range = abs(y_limits[1] - y_limits[0]) y_middle = np.mean(y_limits) z_range = abs(z_limits[1] - z_limits[0]) z_middle = np.mean(z_limits) # The plot bounding box is a sphere in the sense of the infinity # norm, hence I call half the max range the plot radius. plot_radius = 0.5 * max([x_range, y_range, z_range]) ax.set_xlim3d([x_middle - plot_radius, x_middle + plot_radius]) ax.set_ylim3d([y_middle - plot_radius, y_middle + plot_radius]) ax.set_zlim3d([z_middle - plot_radius, z_middle + plot_radius])