import torch from typing import List, Union, Optional, Dict, Any, Callable from diffusers.models.attention_processor import Attention, F from .lora_controller import enable_lora def attn_forward( attn: Attention, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor = None, condition_latents: torch.FloatTensor = None, attention_mask: Optional[torch.FloatTensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, cond_rotary_emb: Optional[torch.Tensor] = None, model_config: Optional[Dict[str, Any]] = {}, ) -> torch.FloatTensor: batch_size, _, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) with enable_lora( (attn.to_q, attn.to_k, attn.to_v), model_config.get("latent_lora", False) ): # `sample` projections. query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` if encoder_hidden_states is not None: # `context` projections. encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q( encoder_hidden_states_query_proj ) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k( encoder_hidden_states_key_proj ) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) if condition_latents is not None: cond_query = attn.to_q(condition_latents) cond_key = attn.to_k(condition_latents) cond_value = attn.to_v(condition_latents) cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose( 1, 2 ) cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose( 1, 2 ) if attn.norm_q is not None: cond_query = attn.norm_q(cond_query) if attn.norm_k is not None: cond_key = attn.norm_k(cond_key) if cond_rotary_emb is not None: cond_query = apply_rotary_emb(cond_query, cond_rotary_emb) cond_key = apply_rotary_emb(cond_key, cond_rotary_emb) if condition_latents is not None: query = torch.cat([query, cond_query], dim=2) key = torch.cat([key, cond_key], dim=2) value = torch.cat([value, cond_value], dim=2) if not model_config.get("union_cond_attn", True): # If we don't want to use the union condition attention, we need to mask the attention # between the hidden states and the condition latents attention_mask = torch.ones( query.shape[2], key.shape[2], device=query.device, dtype=torch.bool ) condition_n = cond_query.shape[2] attention_mask[-condition_n:, :-condition_n] = False attention_mask[:-condition_n, -condition_n:] = False if hasattr(attn, "c_factor"): attention_mask = torch.zeros( query.shape[2], key.shape[2], device=query.device, dtype=query.dtype ) condition_n = cond_query.shape[2] bias = torch.log(attn.c_factor[0]) attention_mask[-condition_n:, :-condition_n] = bias attention_mask[:-condition_n, -condition_n:] = bias hidden_states = F.scaled_dot_product_attention( query, key, value, dropout_p=0.0, is_causal=False, attn_mask=attention_mask ) hidden_states = hidden_states.transpose(1, 2).reshape( batch_size, -1, attn.heads * head_dim ) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: if condition_latents is not None: encoder_hidden_states, hidden_states, condition_latents = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[ :, encoder_hidden_states.shape[1] : -condition_latents.shape[1] ], hidden_states[:, -condition_latents.shape[1] :], ) else: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) with enable_lora((attn.to_out[0],), model_config.get("latent_lora", False)): # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) if condition_latents is not None: condition_latents = attn.to_out[0](condition_latents) condition_latents = attn.to_out[1](condition_latents) return ( (hidden_states, encoder_hidden_states, condition_latents) if condition_latents is not None else (hidden_states, encoder_hidden_states) ) elif condition_latents is not None: # if there are condition_latents, we need to separate the hidden_states and the condition_latents hidden_states, condition_latents = ( hidden_states[:, : -condition_latents.shape[1]], hidden_states[:, -condition_latents.shape[1] :], ) return hidden_states, condition_latents else: return hidden_states def block_forward( self, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor, condition_latents: torch.FloatTensor, temb: torch.FloatTensor, cond_temb: torch.FloatTensor, cond_rotary_emb=None, image_rotary_emb=None, model_config: Optional[Dict[str, Any]] = {}, ): use_cond = condition_latents is not None with enable_lora((self.norm1.linear,), model_config.get("latent_lora", False)): norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, emb=temb ) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( self.norm1_context(encoder_hidden_states, emb=temb) ) if use_cond: ( norm_condition_latents, cond_gate_msa, cond_shift_mlp, cond_scale_mlp, cond_gate_mlp, ) = self.norm1(condition_latents, emb=cond_temb) # Attention. result = attn_forward( self.attn, model_config=model_config, hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, condition_latents=norm_condition_latents if use_cond else None, image_rotary_emb=image_rotary_emb, cond_rotary_emb=cond_rotary_emb if use_cond else None, ) attn_output, context_attn_output = result[:2] cond_attn_output = result[2] if use_cond else None # Process attention outputs for the `hidden_states`. # 1. hidden_states attn_output = gate_msa.unsqueeze(1) * attn_output hidden_states = hidden_states + attn_output # 2. encoder_hidden_states context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output encoder_hidden_states = encoder_hidden_states + context_attn_output # 3. condition_latents if use_cond: cond_attn_output = cond_gate_msa.unsqueeze(1) * cond_attn_output condition_latents = condition_latents + cond_attn_output if model_config.get("add_cond_attn", False): hidden_states += cond_attn_output # LayerNorm + MLP. # 1. hidden_states norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = ( norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] ) # 2. encoder_hidden_states norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_encoder_hidden_states = ( norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] ) # 3. condition_latents if use_cond: norm_condition_latents = self.norm2(condition_latents) norm_condition_latents = ( norm_condition_latents * (1 + cond_scale_mlp[:, None]) + cond_shift_mlp[:, None] ) # Feed-forward. with enable_lora((self.ff.net[2],), model_config.get("latent_lora", False)): # 1. hidden_states ff_output = self.ff(norm_hidden_states) ff_output = gate_mlp.unsqueeze(1) * ff_output # 2. encoder_hidden_states context_ff_output = self.ff_context(norm_encoder_hidden_states) context_ff_output = c_gate_mlp.unsqueeze(1) * context_ff_output # 3. condition_latents if use_cond: cond_ff_output = self.ff(norm_condition_latents) cond_ff_output = cond_gate_mlp.unsqueeze(1) * cond_ff_output # Process feed-forward outputs. hidden_states = hidden_states + ff_output encoder_hidden_states = encoder_hidden_states + context_ff_output if use_cond: condition_latents = condition_latents + cond_ff_output # Clip to avoid overflow. if encoder_hidden_states.dtype == torch.float16: encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) return encoder_hidden_states, hidden_states, condition_latents if use_cond else None def single_block_forward( self, hidden_states: torch.FloatTensor, temb: torch.FloatTensor, image_rotary_emb=None, condition_latents: torch.FloatTensor = None, cond_temb: torch.FloatTensor = None, cond_rotary_emb=None, model_config: Optional[Dict[str, Any]] = {}, ): using_cond = condition_latents is not None residual = hidden_states with enable_lora( ( self.norm.linear, self.proj_mlp, ), model_config.get("latent_lora", False), ): norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) if using_cond: residual_cond = condition_latents norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb) mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents)) attn_output = attn_forward( self.attn, model_config=model_config, hidden_states=norm_hidden_states, image_rotary_emb=image_rotary_emb, **( { "condition_latents": norm_condition_latents, "cond_rotary_emb": cond_rotary_emb if using_cond else None, } if using_cond else {} ), ) if using_cond: attn_output, cond_attn_output = attn_output with enable_lora((self.proj_out,), model_config.get("latent_lora", False)): hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) gate = gate.unsqueeze(1) hidden_states = gate * self.proj_out(hidden_states) hidden_states = residual + hidden_states if using_cond: condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2) cond_gate = cond_gate.unsqueeze(1) condition_latents = cond_gate * self.proj_out(condition_latents) condition_latents = residual_cond + condition_latents if hidden_states.dtype == torch.float16: hidden_states = hidden_states.clip(-65504, 65504) return hidden_states if not using_cond else (hidden_states, condition_latents)