CUDA_VISIBLE_DEVICES=0 python -m diffusion.train_diffusion \ trainer.gpu=1 \ trainer.evaluate=true \ trainer.test_output_dir=./outputs/pc/ \ trainer.resume_from_checkpoint=./ckpt/Diffusion_pc_sq30_1600k.ckpt \ trainer.num_worker=4 \ trainer.batch_size=384 \ dataset.name=AutoEncoder_dataset3 \ dataset.data_root=./data/organized_data \ dataset.cond_root=./data/organized_data \ dataset.num_max_faces=30 \ dataset.is_aug=0 \ dataset.condition=[pc] \ dataset.cached_condition=false \ model.num_max_faces=30 \ model.autoencoder=AutoEncoder_1119_light \ model.diffusion_latent=768 \ model.in_channels=6 \ model.beta_schedule=squaredcos_cap_v2 \ model.autoencoder_weights=./ckpt/AE_deepcad_1100k.ckpt \ model.condition=[pc] \ model.stored_z=false \ model.is_aug=false \ model.name=Diffusion_condition