import yaml import fitz import torch import gradio as gr from PIL import Image from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import Chroma from langchain.llms import HuggingFacePipeline from langchain.chains import ConversationalRetrievalChain from langchain.document_loaders import PyPDFLoader from langchain.prompts import PromptTemplate from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline import spaces class PDFChatBot: def __init__(self, config_path="config.yaml"): """ Initialize the PDFChatBot instance. Parameters: config_path (str): Path to the configuration file (default is "../config.yaml"). """ self.processed = False self.page = 0 self.chat_history = [] self.config = self.load_config(config_path) # Initialize other attributes to None self.prompt = None self.documents = None self.embeddings = None self.vectordb = None self.tokenizer = None self.model = None self.pipeline = None self.chain = None def load_config(self, file_path): """ Load configuration from a YAML file. Parameters: file_path (str): Path to the YAML configuration file. Returns: dict: Configuration as a dictionary. """ with open(file_path, 'r') as stream: try: config = yaml.safe_load(stream) return config except yaml.YAMLError as exc: print(f"Error loading configuration: {exc}") return None def add_text(self, history, text): """ Add user-entered text to the chat history. Parameters: history (list): List of chat history tuples. text (str): User-entered text. Returns: list: Updated chat history. """ if not text: raise gr.Error('Enter text') history.append((text, '')) return history def create_prompt_template(self): """ Create a prompt template for the chatbot. """ template = ( f"The assistant should provide detailed explanations." "Combine the chat history and follow up question into " "Follow up question: What is this" ) self.prompt = PromptTemplate.from_template(template) def load_embeddings(self): """ Load embeddings from Hugging Face and set in the config file. """ self.embeddings = HuggingFaceEmbeddings(model_name=self.config.get("modelEmbeddings")) def load_vectordb(self): """ Load the vector database from the documents and embeddings. """ self.vectordb = Chroma.from_documents(self.documents, self.embeddings) def load_tokenizer(self): """ Load the tokenizer from Hugging Face and set in the config file. """ self.tokenizer = AutoTokenizer.from_pretrained(self.config.get("autoTokenizer")) def load_model(self): """ Load the causal language model from Hugging Face and set in the config file. """ self.model = AutoModelForCausalLM.from_pretrained( self.config.get("autoModelForCausalLM"), device_map='auto', torch_dtype=torch.float16, token=True, ) def create_pipeline(self): """ Create a pipeline for text generation using the loaded model and tokenizer. """ pipe = pipeline( model=self.model, task='text-generation', tokenizer=self.tokenizer, max_new_tokens=1024 ) self.pipeline = HuggingFacePipeline(pipeline=pipe) def create_chain(self): """ Create a Conversational Retrieval Chain """ self.chain = ConversationalRetrievalChain.from_llm( self.pipeline, chain_type="stuff", retriever=self.vectordb.as_retriever(search_kwargs={"k": 1}), condense_question_prompt=self.prompt, return_source_documents=True ) def process_file(self, file): """ Process the uploaded PDF file and initialize necessary components: Tokenizer, VectorDB and LLM. Parameters: file (FileStorage): The uploaded PDF file. """ self.create_prompt_template() self.documents = PyPDFLoader(file.name).load() self.load_embeddings() self.load_vectordb() self.load_tokenizer() self.load_model() self.create_pipeline() self.create_chain() @spaces.GPU def generate_response(self, history, query, file): """ Generate a response based on user query and chat history. Parameters: history (list): List of chat history tuples. query (str): User's query. file (FileStorage): The uploaded PDF file. Returns: tuple: Updated chat history and a space. """ if not query: raise gr.Error(message='Submit a question') if not file: raise gr.Error(message='Upload a PDF') if not self.processed: self.process_file(file) self.processed = True result = self.chain({"question": query, 'chat_history': self.chat_history}, return_only_outputs=True) self.chat_history.append((query, result["answer"])) self.page = list(result['source_documents'][0])[1][1]['page'] for char in result['answer']: history[-1][-1] += char return history, " " def render_file(self, file): """ Renders a specific page of a PDF file as an image. Parameters: file (FileStorage): The PDF file. Returns: PIL.Image.Image: The rendered page as an image. """ doc = fitz.open(file.name) page = doc[self.page] pix = page.get_pixmap(matrix=fitz.Matrix(300 / 72, 300 / 72)) image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) return image