from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model from imutils.video import VideoStream import numpy as np import argparse import imutils import time import cv2 import streamlit as st import urllib import gradio as gr def detect_and_predict_mask(frame, faceNet, maskNet): (h, w) = frame.shape[:2] blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104.0, 177.0, 123.0)) faceNet.setInput(blob) detections = faceNet.forward() faces = [] locs = [] preds = [] for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > args["confidence"]: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) face = frame[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) faces.append(face) locs.append((startX, startY, endX, endY)) if len(faces) > 0: preds = maskNet.predict(faces) return (locs, preds) ap = argparse.ArgumentParser() ap.add_argument("-f", "--face", type=str, default="face_detector", help="path to face detector model directory") ap.add_argument("-m", "--model", type=str, default="model.h5", help="path to trained face mask detector model") ap.add_argument("-c", "--confidence", type=float, default=0.5, help="minimum probability to filter weak detections") args = vars(ap.parse_args()) print("[INFO] loading face detector model...") # Define the URLs of the deploy.prototxt and caffe model files in the GitHub repo prototxt_url = "https://huggingface.co/spaces/Yogasta/Real_Time_Face_Mask_Detector/raw/main/deploy.prototxt" weights_url = "https://huggingface.co/spaces/Yogasta/Real_Time_Face_Mask_Detector/resolve/main/res10_300x300_ssd_iter_140000.caffemodel" # Define the local paths where the files will be downloaded prototxt_path = "deploy.prototxt" weights_path = "res10_300x300_ssd_iter_140000.caffemodel" # Download the files urllib.request.urlretrieve(prototxt_url, prototxt_path) urllib.request.urlretrieve(weights_url, weights_path) faceNet = cv2.dnn.readNet(prototxt_path, weights_path) print("[INFO] loading face mask detector model...") maskNet = load_model(args["model"]) print("[INFO] starting video stream...") # Streamlit initialization #st.title("Real-Time Face Mask Detection") #st.sidebar.title("Face Mask Detection") ## Select camera to feed the model #available_cameras = {'Camera 1': 0, 'Camera 2': 1, 'Camera 3': 2} #cam_id = st.sidebar.selectbox("Select which camera signal to use", list(available_cameras.keys())) # Define holder for the processed image #img_placeholder = st.empty() #vs = VideoStream(src=available_cameras[cam_id]).start() #time.sleep(2.0) startpred = st.button('Start Webcam') def process_image(image): (locs, preds) = detect_and_predict_mask(image, faceNet, maskNet) for (box, pred) in zip(locs, preds): (startX, startY, endX, endY) = box withoutMask = pred[0] mask = 1 - withoutMask label = "Mask" if mask > withoutMask else "No Mask" color = (0, 255, 0) if label == "Mask" else (0, 0, 255) label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) cv2.putText(image, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(image, (startX, startY), (endX, endY), color, 2) return image iface = gr.Interface( fn=process_image, inputs=gr.inputs.Image(source="camera", tool="opencv", type="numpy"), outputs=gr.outputs.Image(type="numpy"), live=True, layout="vertical", title="Real-Time Face Mask Detection", description="A real-time face mask detection application using webcam input. Click 'Start' to activate the camera and see the detection results." ) iface.launch()