import dataclasses import torch from torch import Tensor import torch.nn as nn from torch.nn import functional as F @dataclasses.dataclass class CompressionConfig: """Group-wise quantization.""" num_bits: int group_size: int group_dim: int symmetric: bool enabled: bool = True default_compression_config = CompressionConfig( num_bits=8, group_size=256, group_dim=1, symmetric=True, enabled=True ) class CLinear(nn.Module): """Compressed Linear Layer.""" def __init__(self, weight, bias, device): super().__init__() self.weight = compress(weight.data.to(device), default_compression_config) self.bias = bias def forward(self, input: Tensor) -> Tensor: weight = decompress(self.weight, default_compression_config) return F.linear(input, weight, self.bias) def compress_module(module, target_device): for attr_str in dir(module): target_attr = getattr(module, attr_str) if type(target_attr) == torch.nn.Linear: setattr( module, attr_str, CLinear(target_attr.weight, target_attr.bias, target_device), ) for name, child in module.named_children(): compress_module(child, target_device) def compress(tensor, config): """Simulate group-wise quantization.""" if not config.enabled: return tensor group_size, num_bits, group_dim, symmetric = ( config.group_size, config.num_bits, config.group_dim, config.symmetric, ) assert num_bits <= 8 original_shape = tensor.shape num_groups = (original_shape[group_dim] + group_size - 1) // group_size new_shape = ( original_shape[:group_dim] + (num_groups, group_size) + original_shape[group_dim + 1 :] ) # Pad pad_len = (group_size - original_shape[group_dim] % group_size) % group_size if pad_len != 0: pad_shape = ( original_shape[:group_dim] + (pad_len,) + original_shape[group_dim + 1 :] ) tensor = torch.cat( [tensor, torch.zeros(pad_shape, dtype=tensor.dtype, device=tensor.device)], dim=group_dim, ) data = tensor.view(new_shape) # Quantize if symmetric: B = 2 ** (num_bits - 1) - 1 scale = B / torch.max(data.abs(), dim=group_dim + 1, keepdim=True)[0] data = data * scale data = data.clamp_(-B, B).round_().to(torch.int8) return data, scale, original_shape else: B = 2**num_bits - 1 mn = torch.min(data, dim=group_dim + 1, keepdim=True)[0] mx = torch.max(data, dim=group_dim + 1, keepdim=True)[0] scale = B / (mx - mn) data = data - mn data.mul_(scale) data = data.clamp_(0, B).round_().to(torch.uint8) return data, mn, scale, original_shape def decompress(packed_data, config): """Simulate group-wise dequantization.""" if not config.enabled: return packed_data group_size, num_bits, group_dim, symmetric = ( config.group_size, config.num_bits, config.group_dim, config.symmetric, ) # Dequantize if symmetric: data, scale, original_shape = packed_data data = data / scale else: data, mn, scale, original_shape = packed_data data = data / scale data.add_(mn) # Unpad pad_len = (group_size - original_shape[group_dim] % group_size) % group_size if pad_len: padded_original_shape = ( original_shape[:group_dim] + (original_shape[group_dim] + pad_len,) + original_shape[group_dim + 1 :] ) data = data.reshape(padded_original_shape) indices = [slice(0, x) for x in original_shape] return data[indices].contiguous() else: return data.view(original_shape)