#!/usr/bin/env python3 # Copyright (c) OpenMMLab. All rights reserved. """HuixiangDou binary.""" import argparse import os import time import json import random from multiprocessing import Process, Value import pytoml import requests from aiohttp import web from loguru import logger from .service import ErrorCode, Worker, llm_serve def parse_args(): """Parse args.""" parser = argparse.ArgumentParser(description='Worker.') parser.add_argument('--work_dir', type=str, default='workdir', help='Working directory.') parser.add_argument( '--config_path', default='config.ini', type=str, help='Worker configuration path. Default value is config.ini') parser.add_argument('--standalone', action='store_true', default=False, help='Auto deploy required Hybrid LLM Service.') parser.add_argument('--step_by_step', default='annotate', # 'annotate' or 'sparkle' or 'writting' help='step by step mode') args = parser.parse_args() return args def check_env(args): """Check or create config.ini and logs dir.""" if not os.path.exists('logs'): os.makedirs('logs') CONFIG_NAME = 'config.ini' CONFIG_URL = 'https://raw.githubusercontent.com/InternLM/HuixiangDou/main/config.ini' # noqa E501 if not os.path.exists(CONFIG_NAME): logger.warning( f'{CONFIG_NAME} not found, download a template from {CONFIG_URL}.') try: response = requests.get(CONFIG_URL, timeout=60) response.raise_for_status() with open(CONFIG_NAME, 'wb') as f: f.write(response.content) except Exception as e: logger.error(f'Failed to download file due to {e}') raise e if not os.path.exists(args.work_dir): logger.warning( f'args.work_dir dir not exist, auto create {args.work_dir}.') os.makedirs(args.work_dir) def build_reply_text(reply: str, references: list): if len(references) < 1: return reply ret = reply for ref in references: ret += '\n' ret += ref return ret def annotation(assistant, config: dict,k,n=50): query = 'annotation' feature_dir = os.path.join(config['feature_store']['work_dir'], 'cluster_features') samples_json = os.path.join(feature_dir, f'cluster_features_{k}','samples.json') with open(samples_json, 'r') as f: samples = json.load(f) f.close() new_obj_list = [] for cluster_no in random.sample(samples.keys(), n): chunk = '\n'.join(samples[cluster_no]['samples'][:10]) code, reply, cluster_no = assistant.annotate_cluster( cluster_no=cluster_no, chunk=chunk, history=[], groupname='') references = f"cluster_no: {cluster_no}" new_obj = { 'cluster_no': cluster_no, 'chunk': chunk, 'annotation': reply } new_obj_list.append(new_obj) logger.info(f'{code}, {query}, {reply}, {references}') with open(os.path.join(feature_dir, f'cluster_features_{k}', 'annotation.json'), 'w') as f: json.dump(new_obj_list, f, indent=4, ensure_ascii=False) f.close() # def lark_send_only(assistant, fe_config: dict): # queries = ['what is skin-gut axis?',"什么是肠皮轴?","肠道和皮肤的免疫细胞如何相互影响"] # for query in queries: # code, reply, references = assistant.generate(query=query, # history=[], # groupname='') # logger.info(f'{code}, {query}, {reply}, {references}') # reply_text = build_reply_text(reply=reply, references=references) # if fe_config['type'] == 'lark' and code == ErrorCode.SUCCESS: # # send message to lark group # from .frontend import Lark # lark = Lark(webhook=fe_config['webhook_url']) # logger.info(f'send {reply} and {references} to lark group.') # lark.send_text(msg=reply_text) # def lark_group_recv_and_send(assistant, fe_config: dict): # from .frontend import (is_revert_command, revert_from_lark_group, # send_to_lark_group) # msg_url = fe_config['webhook_url'] # lark_group_config = fe_config['lark_group'] # sent_msg_ids = [] # while True: # # fetch a user message # resp = requests.post(msg_url, timeout=10) # resp.raise_for_status() # json_obj = resp.json() # if len(json_obj) < 1: # # no user input, sleep # time.sleep(2) # continue # logger.debug(json_obj) # query = json_obj['content'] # if is_revert_command(query): # for msg_id in sent_msg_ids: # error = revert_from_lark_group(msg_id, # lark_group_config['app_id'], # lark_group_config['app_secret']) # if error is not None: # logger.error( # f'revert msg_id {msg_id} fail, reason {error}') # else: # logger.debug(f'revert msg_id {msg_id}') # time.sleep(0.5) # sent_msg_ids = [] # continue # code, reply, references = assistant.generate(query=query, # history=[], # groupname='') # if code == ErrorCode.SUCCESS: # json_obj['reply'] = build_reply_text(reply=reply, # references=references) # error, msg_id = send_to_lark_group( # json_obj=json_obj, # app_id=lark_group_config['app_id'], # app_secret=lark_group_config['app_secret']) # if error is not None: # raise error # sent_msg_ids.append(msg_id) # else: # logger.debug(f'{code} for the query {query}') # def wechat_personal_run(assistant, fe_config: dict): # """Call assistant inference.""" # async def api(request): # input_json = await request.json() # logger.debug(input_json) # query = input_json['query'] # if type(query) is dict: # query = query['content'] # code, reply, references = assistant.generate(query=query, # history=[], # groupname='') # reply_text = build_reply_text(reply=reply, references=references) # return web.json_response({'code': int(code), 'reply': reply_text}) # bind_port = fe_config['wechat_personal']['bind_port'] # app = web.Application() # app.add_routes([web.post('/api', api)]) # web.run_app(app, host='0.0.0.0', port=bind_port) def run(): """Automatically download config, start llm server and run examples.""" args = parse_args() check_env(args) if args.standalone is True: # hybrid llm serve server_ready = Value('i', 0) server_process = Process(target=llm_serve, args=(args.config_path, server_ready)) server_process.daemon = True server_process.start() while True: if server_ready.value == 0: logger.info('waiting for server to be ready..') time.sleep(3) elif server_ready.value == 1: break else: logger.error('start local LLM server failed, quit.') raise Exception('local LLM path') logger.info('Hybrid LLM Server start.') # query by worker with open(args.config_path, encoding='utf8') as f: config = pytoml.load(f) fe_config = config['frontend'] logger.info('Config loaded.') assistant = Worker(work_dir=args.work_dir, config_path=args.config_path,language='en') step = args.step_by_step if step == 'annotate': annotation(assistant, config, 500) annotation(assistant, config, 200) annotation(assistant, config, 100) annotation(assistant, config, 50) annotation(assistant, config, 20,n=20) annotation(assistant, config, 10,n=10) elif step == 'sparkle': pass # TODO elif step == 'writting': pass # TODO else: logger.info(f'unsupported step_by_step mode {step}, please read `config.ini` description.') # fe_type = fe_config['type'] # if fe_type == 'lark' or fe_type == 'none': # lark_send_only(assistant, fe_config) # elif fe_type == 'lark_group': # lark_group_recv_and_send(assistant, fe_config) # elif fe_type == 'wechat_personal': # wechat_personal_run(assistant, fe_config) # else: # logger.info( # f'unsupported fe_config.type {fe_type}, please read `config.ini` description.' # noqa E501 # ) # server_process.join() if __name__ == '__main__': run()