from pydantic import BaseModel from llama_cpp import Llama import re import os import gradio as gr from dotenv import load_dotenv from fastapi import FastAPI, Request from fastapi.responses import JSONResponse import spaces import urllib3 import random urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) app = FastAPI() load_dotenv() HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") global_data = { 'model': None, 'tokens': { 'eos': 'eos_token', 'pad': 'pad_token', 'padding': 'padding_token', 'unk': 'unk_token', 'bos': 'bos_token', 'sep': 'sep_token', 'cls': 'cls_token', 'mask': 'mask_token' } } model_configs = [ {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-70B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-70b-instruct-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/codegemma-2b-IQ1_S-GGUF", "filename": "codegemma-2b-iq1_s-imat.gguf"}, {"repo_id": "Ffftdtd5dtft/Phi-3.5-mini-instruct-Q2_K-GGUF", "filename": "phi-3.5-mini-instruct-q2_k.gguf"}, {"repo_id": "Ffftdtd5dtft/TinyLlama-1.1B-Chat-v1.0-IQ1_S-GGUF", "filename": "tinyllama-1.1b-chat-v1.0-iq1_s-imat.gguf"}, {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Minitron-8B-Base-IQ1_S-GGUF", "filename": "mistral-nemo-minitron-8b-base-iq1_s-imat.gguf"}, {"repo_id": "Ffftdtd5dtft/Mistral-Nemo-Instruct-2407-Q2_K-GGUF", "filename": "mistral-nemo-instruct-2407-q2_k.gguf"} ] class ModelManager: def __init__(self): self.model = None def load_models(self): models = [] for config in model_configs: try: model = Llama.from_pretrained(repo_id=config['repo_id'], filename=config['filename'], use_auth_token=HUGGINGFACE_TOKEN) models.append(model) except Exception: continue self.model = models model_manager = ModelManager() model_manager.load_models() global_data['model'] = model_manager.model class ChatRequest(BaseModel): message: str def normalize_input(input_text): return input_text.strip() def remove_duplicates(text): text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text) text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text) text = text.replace('[/INST]', '') lines = text.split('\n') unique_lines = [] seen_lines = set() for line in lines: if line not in seen_lines: unique_lines.append(line) seen_lines.add(line) return '\n'.join(unique_lines) @spaces.GPU() async def generate_combined_response(inputs): combined_response = "" top_p = round(random.uniform(0.01, 1.00), 2) top_k = random.randint(1, 100) temperature = round(random.uniform(0.01, 2.00), 2) for model in global_data['model']: try: response = model(inputs, top_p=top_p, top_k=top_k, temperature=temperature) combined_response += remove_duplicates(response['choices'][0]['text']) + "\n" except Exception: continue return combined_response async def process_message(message): inputs = normalize_input(message) combined_response = await generate_combined_response(inputs) formatted_response = "" for line in combined_response.split("\n"): formatted_response += f"{line}\n\n" return formatted_response @app.post("/generate_multimodel") async def api_generate_multimodel(request: Request): data = await request.json() message = data["message"] formatted_response = await process_message(message) return JSONResponse({"response": formatted_response}) iface = gr.Interface( fn=process_message, inputs=gr.Textbox(lines=2, placeholder="Enter your message here..."), outputs=gr.Markdown(), title="Multi-Model LLM API", description="Enter a message and get responses from a unified model.", ) if __name__ == "__main__": port = int(os.environ.get("PORT", 7860)) iface.launch(server_port=port)