import re
import torch
import torchaudio
import numpy as np
import tempfile
from einops import rearrange
from vocos import Vocos
from pydub import AudioSegment, silence
from model import CFM, UNetT, DiT, MMDiT
from cached_path import cached_path
from model.utils import (
    load_checkpoint,
    get_tokenizer,
    convert_char_to_pinyin,
    save_spectrogram,
)
from transformers import pipeline
import soundfile as sf
import tomli
import argparse
import tqdm
from pathlib import Path

parser = argparse.ArgumentParser(
    prog="python3 inference-cli.py",
    description="Commandline interface for E2/F5 TTS with Advanced Batch Processing.",
    epilog="Specify  options above  to override  one or more settings from config.",
)
parser.add_argument(
    "-c",
    "--config",
    help="Configuration file. Default=cli-config.toml",
    default="inference-cli.toml",
)
parser.add_argument(
    "-m",
    "--model",
    help="F5-TTS | E2-TTS",
)
parser.add_argument(
    "-r",
    "--ref_audio",
    type=str,
    help="Reference audio file < 15 seconds."
)
parser.add_argument(
    "-s",
    "--ref_text",
    type=str,
    default="666",
    help="Subtitle for the reference audio."
)
parser.add_argument(
    "-t",
    "--gen_text",
    type=str,
    help="Text to generate.",
)
parser.add_argument(
    "-o",
    "--output_dir",
    type=str,
    help="Path to output folder..",
)
parser.add_argument(
    "--remove_silence",
    help="Remove silence.",
)
args = parser.parse_args()

config = tomli.load(open(args.config, "rb"))

ref_audio = args.ref_audio if args.ref_audio else config["ref_audio"]
ref_text = args.ref_text if args.ref_text != "666" else config["ref_text"]
gen_text = args.gen_text if args.gen_text else config["gen_text"]
output_dir = args.output_dir if args.output_dir else config["output_dir"]
model = args.model if args.model else config["model"]
remove_silence = args.remove_silence if args.remove_silence else config["remove_silence"]
wave_path = Path(output_dir)/"out.wav"
spectrogram_path = Path(output_dir)/"out.png"

SPLIT_WORDS = [
    "but", "however", "nevertheless", "yet", "still",
    "therefore", "thus", "hence", "consequently",
    "moreover", "furthermore", "additionally",
    "meanwhile", "alternatively", "otherwise",
    "namely", "specifically", "for example", "such as",
    "in fact", "indeed", "notably",
    "in contrast", "on the other hand", "conversely",
    "in conclusion", "to summarize", "finally"
]

device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps" if torch.backends.mps.is_available() else "cpu"
)
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")

print(f"Using {device} device")

# --------------------- Settings -------------------- #

target_sample_rate = 24000
n_mel_channels = 100
hop_length = 256
target_rms = 0.1
nfe_step = 32  # 16, 32
cfg_strength = 2.0
ode_method = "euler"
sway_sampling_coef = -1.0
speed = 1.0
# fix_duration = 27  # None or float (duration in seconds)
fix_duration = None

def load_model(repo_name, exp_name, model_cls, model_cfg, ckpt_step):
    ckpt_path = str(cached_path(f"hf://SWivid/{repo_name}/{exp_name}/model_{ckpt_step}.safetensors"))
    # ckpt_path = f"ckpts/{exp_name}/model_{ckpt_step}.pt"  # .pt | .safetensors
    vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
    model = CFM(
        transformer=model_cls(
            **model_cfg, text_num_embeds=vocab_size, mel_dim=n_mel_channels
        ),
        mel_spec_kwargs=dict(
            target_sample_rate=target_sample_rate,
            n_mel_channels=n_mel_channels,
            hop_length=hop_length,
        ),
        odeint_kwargs=dict(
            method=ode_method,
        ),
        vocab_char_map=vocab_char_map,
    ).to(device)

    model = load_checkpoint(model, ckpt_path, device, use_ema = True)

    return model


# load models
F5TTS_model_cfg = dict(
    dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4
)
E2TTS_model_cfg = dict(dim=1024, depth=24, heads=16, ff_mult=4)

def split_text_into_batches(text, max_chars=200, split_words=SPLIT_WORDS):
    if len(text.encode('utf-8')) <= max_chars:
        return [text]
    if text[-1] not in ['。', '.', '!', '!', '?', '?']:
        text += '.'
        
    sentences = re.split('([。.!?!?])', text)
    sentences = [''.join(i) for i in zip(sentences[0::2], sentences[1::2])]
    
    batches = []
    current_batch = ""
    
    def split_by_words(text):
        words = text.split()
        current_word_part = ""
        word_batches = []
        for word in words:
            if len(current_word_part.encode('utf-8')) + len(word.encode('utf-8')) + 1 <= max_chars:
                current_word_part += word + ' '
            else:
                if current_word_part:
                    # Try to find a suitable split word
                    for split_word in split_words:
                        split_index = current_word_part.rfind(' ' + split_word + ' ')
                        if split_index != -1:
                            word_batches.append(current_word_part[:split_index].strip())
                            current_word_part = current_word_part[split_index:].strip() + ' '
                            break
                    else:
                        # If no suitable split word found, just append the current part
                        word_batches.append(current_word_part.strip())
                        current_word_part = ""
                current_word_part += word + ' '
        if current_word_part:
            word_batches.append(current_word_part.strip())
        return word_batches

    for sentence in sentences:
        if len(current_batch.encode('utf-8')) + len(sentence.encode('utf-8')) <= max_chars:
            current_batch += sentence
        else:
            # If adding this sentence would exceed the limit
            if current_batch:
                batches.append(current_batch)
                current_batch = ""
            
            # If the sentence itself is longer than max_chars, split it
            if len(sentence.encode('utf-8')) > max_chars:
                # First, try to split by colon
                colon_parts = sentence.split(':')
                if len(colon_parts) > 1:
                    for part in colon_parts:
                        if len(part.encode('utf-8')) <= max_chars:
                            batches.append(part)
                        else:
                            # If colon part is still too long, split by comma
                            comma_parts = re.split('[,,]', part)
                            if len(comma_parts) > 1:
                                current_comma_part = ""
                                for comma_part in comma_parts:
                                    if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
                                        current_comma_part += comma_part + ','
                                    else:
                                        if current_comma_part:
                                            batches.append(current_comma_part.rstrip(','))
                                        current_comma_part = comma_part + ','
                                if current_comma_part:
                                    batches.append(current_comma_part.rstrip(','))
                            else:
                                # If no comma, split by words
                                batches.extend(split_by_words(part))
                else:
                    # If no colon, split by comma
                    comma_parts = re.split('[,,]', sentence)
                    if len(comma_parts) > 1:
                        current_comma_part = ""
                        for comma_part in comma_parts:
                            if len(current_comma_part.encode('utf-8')) + len(comma_part.encode('utf-8')) <= max_chars:
                                current_comma_part += comma_part + ','
                            else:
                                if current_comma_part:
                                    batches.append(current_comma_part.rstrip(','))
                                current_comma_part = comma_part + ','
                        if current_comma_part:
                            batches.append(current_comma_part.rstrip(','))
                    else:
                        # If no comma, split by words
                        batches.extend(split_by_words(sentence))
            else:
                current_batch = sentence
    
    if current_batch:
        batches.append(current_batch)
    
    return batches

def infer_batch(ref_audio, ref_text, gen_text_batches, model, remove_silence):
    if model == "F5-TTS":
        ema_model = load_model(model, "F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
    elif model == "E2-TTS":
        ema_model = load_model(model, "E2TTS_Base", UNetT, E2TTS_model_cfg, 1200000)

    audio, sr = ref_audio
    if audio.shape[0] > 1:
        audio = torch.mean(audio, dim=0, keepdim=True)

    rms = torch.sqrt(torch.mean(torch.square(audio)))
    if rms < target_rms:
        audio = audio * target_rms / rms
    if sr != target_sample_rate:
        resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
        audio = resampler(audio)
    audio = audio.to(device)

    generated_waves = []
    spectrograms = []

    for i, gen_text in enumerate(tqdm.tqdm(gen_text_batches)):
        # Prepare the text
        if len(ref_text[-1].encode('utf-8')) == 1:
            ref_text = ref_text + " "
        text_list = [ref_text + gen_text]
        final_text_list = convert_char_to_pinyin(text_list)

        # Calculate duration
        ref_audio_len = audio.shape[-1] // hop_length
        zh_pause_punc = r"。,、;:?!"
        ref_text_len = len(ref_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, ref_text))
        gen_text_len = len(gen_text.encode('utf-8')) + 3 * len(re.findall(zh_pause_punc, gen_text))
        duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)

        # inference
        with torch.inference_mode():
            generated, _ = ema_model.sample(
                cond=audio,
                text=final_text_list,
                duration=duration,
                steps=nfe_step,
                cfg_strength=cfg_strength,
                sway_sampling_coef=sway_sampling_coef,
            )

        generated = generated[:, ref_audio_len:, :]
        generated_mel_spec = rearrange(generated, "1 n d -> 1 d n")
        generated_wave = vocos.decode(generated_mel_spec.cpu())
        if rms < target_rms:
            generated_wave = generated_wave * rms / target_rms

        # wav -> numpy
        generated_wave = generated_wave.squeeze().cpu().numpy()
        
        generated_waves.append(generated_wave)
        spectrograms.append(generated_mel_spec[0].cpu().numpy())

    # Combine all generated waves
    final_wave = np.concatenate(generated_waves)

    with open(wave_path, "wb") as f:
        sf.write(f.name, final_wave, target_sample_rate)
        # Remove silence
        if remove_silence:
            aseg = AudioSegment.from_file(f.name)
            non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
            non_silent_wave = AudioSegment.silent(duration=0)
            for non_silent_seg in non_silent_segs:
                non_silent_wave += non_silent_seg
            aseg = non_silent_wave
            aseg.export(f.name, format="wav")
        print(f.name)

    # Create a combined spectrogram
    combined_spectrogram = np.concatenate(spectrograms, axis=1)
    save_spectrogram(combined_spectrogram, spectrogram_path)
    print(spectrogram_path)


def infer(ref_audio_orig, ref_text, gen_text, model, remove_silence, custom_split_words):
    if not custom_split_words.strip():
        custom_words = [word.strip() for word in custom_split_words.split(',')]
        global SPLIT_WORDS
        SPLIT_WORDS = custom_words

    print(gen_text)

    print("Converting audio...")
    with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
        aseg = AudioSegment.from_file(ref_audio_orig)

        non_silent_segs = silence.split_on_silence(aseg, min_silence_len=1000, silence_thresh=-50, keep_silence=500)
        non_silent_wave = AudioSegment.silent(duration=0)
        for non_silent_seg in non_silent_segs:
            non_silent_wave += non_silent_seg
        aseg = non_silent_wave

        audio_duration = len(aseg)
        if audio_duration > 15000:
            print("Audio is over 15s, clipping to only first 15s.")
            aseg = aseg[:15000]
        aseg.export(f.name, format="wav")
        ref_audio = f.name

    if not ref_text.strip():
        print("No reference text provided, transcribing reference audio...")
        pipe = pipeline(
            "automatic-speech-recognition",
            model="openai/whisper-large-v3-turbo",
            torch_dtype=torch.float16,
            device=device,
        )
        ref_text = pipe(
            ref_audio,
            chunk_length_s=30,
            batch_size=128,
            generate_kwargs={"task": "transcribe"},
            return_timestamps=False,
        )["text"].strip()
        print("Finished transcription")
    else:
        print("Using custom reference text...")

    # Split the input text into batches
    audio, sr = torchaudio.load(ref_audio)
    max_chars = int(len(ref_text.encode('utf-8')) / (audio.shape[-1] / sr) * (30 - audio.shape[-1] / sr))
    gen_text_batches = split_text_into_batches(gen_text, max_chars=max_chars)
    print('ref_text', ref_text)
    for i, gen_text in enumerate(gen_text_batches):
        print(f'gen_text {i}', gen_text)
    
    print(f"Generating audio using {model} in {len(gen_text_batches)} batches, loading models...")
    return infer_batch((audio, sr), ref_text, gen_text_batches, model, remove_silence)
    

infer(ref_audio, ref_text, gen_text, model, remove_silence, ",".join(SPLIT_WORDS))