import fastbook fastbook.setup_book() from fastbook import * from fastai.vision.widgets import * # Pick a GPU with free resources (change this accordingly) torch.cuda.set_device(0) # Get images image_path = Path('/raid/heartnet/data/imgset2') images = get_image_files(image_path) # Initialize metric functions recall_function = Recall(pos_label=0) precision_function = Precision(pos_label=0) f1_score = F1Score(pos_label=0) # Initialize DataLoader images_datablock = DataBlock( blocks=(ImageBlock, CategoryBlock), get_items=get_image_files, splitter=RandomSplitter(valid_pct=0.2, seed=42), get_y=parent_label, batch_tfms=aug_transforms(do_flip=False) ) dls = images_datablock.dataloaders(image_path, bs=16) # Create, train, and save model learn = cnn_learner(dls, resnet152, metrics=[error_rate, recall_function, precision_function, f1_score]) learn.fine_tune(16) learn.export('demo_model_50.pkl')