Spaces:
Running
Running
YSMlearnsCode
commited on
Commit
·
315be3f
1
Parent(s):
f1b198c
added model and process file
Browse files- pyproject.toml +1 -0
- src/app/interface.py +3 -1
- src/process/__init__.py +0 -0
- src/process/process.py +112 -0
- uv.lock +0 -0
pyproject.toml
CHANGED
|
@@ -6,4 +6,5 @@ readme = "README.md"
|
|
| 6 |
requires-python = ">=3.11"
|
| 7 |
dependencies = [
|
| 8 |
"gradio>=5.34.2",
|
|
|
|
| 9 |
]
|
|
|
|
| 6 |
requires-python = ">=3.11"
|
| 7 |
dependencies = [
|
| 8 |
"gradio>=5.34.2",
|
| 9 |
+
"ultralytics>=8.3.159",
|
| 10 |
]
|
src/app/interface.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
def main_interface():
|
|
@@ -10,5 +12,5 @@ def main_interface():
|
|
| 10 |
with gr.Row():
|
| 11 |
input_image = gr.Image(type="numpy", label="Upload Image")
|
| 12 |
output_image = gr.Image(type="numpy", label="Segmented Output")
|
| 13 |
-
|
| 14 |
return demo
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from ..process.process import display_result
|
| 3 |
+
import os
|
| 4 |
|
| 5 |
|
| 6 |
def main_interface():
|
|
|
|
| 12 |
with gr.Row():
|
| 13 |
input_image = gr.Image(type="numpy", label="Upload Image")
|
| 14 |
output_image = gr.Image(type="numpy", label="Segmented Output")
|
| 15 |
+
input_image.change(fn=display_result, inputs=input_image, outputs=output_image)
|
| 16 |
return demo
|
src/process/__init__.py
ADDED
|
File without changes
|
src/process/process.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ultralytics import YOLO
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import os
|
| 5 |
+
|
| 6 |
+
# Waste Bin Mapping (German Mülltrennung System)
|
| 7 |
+
bin_map = {
|
| 8 |
+
"Yellow Bin (Gelbe Tonne)": [
|
| 9 |
+
"Aluminium blister pack", "Aluminium foil", "Carded blister pack", "Clear plastic bottle",
|
| 10 |
+
"Disposable food container", "Disposable plastic cup", "Drink Carton", "Drink can",
|
| 11 |
+
"Foam cup", "Meal carton", "Metal lid", "Metal bottle cap", "Other plastic bottle",
|
| 12 |
+
"Other plastic container", "Other plastic cup", "Other plastic wrapper", "Plastic bottle cap",
|
| 13 |
+
"Plastic film", "Plastic glooves", "Plastic lid", "Plastic straw", "Polypropylene bag",
|
| 14 |
+
"Pop tab", "Single-use carrier bag", "Six pack rings", "Spread tub", "Squeezable tube",
|
| 15 |
+
"Tupperware"
|
| 16 |
+
],
|
| 17 |
+
"Grey Bin (Restmüll)": [
|
| 18 |
+
"Cigarette", "Garbage bag", "Shoe", "Unlabeled litter", "Plastified paper bag",
|
| 19 |
+
"Styrofoam piece", "Rope & strings", "Foam food container", "Other plastic",
|
| 20 |
+
"Pizza box", "Tissues"
|
| 21 |
+
],
|
| 22 |
+
"Green Bin (Biotonne)": [
|
| 23 |
+
"Food waste"
|
| 24 |
+
],
|
| 25 |
+
"Blue Bin (Papiertonne)": [
|
| 26 |
+
"Egg carton", "Normal paper", "Other Carton", "Paper Bag", "Paper cup", "Paper straw",
|
| 27 |
+
"Pizza box", "Toilet tube", "Magazine paper", "Wrapping paper", "Corrugated carton"
|
| 28 |
+
],
|
| 29 |
+
"Glascontainer": [
|
| 30 |
+
"Glass bottle", "Glass cup", "Glass jar", "Broken glass"
|
| 31 |
+
],
|
| 32 |
+
"Hazardous Waste (Sondermüll)": [
|
| 33 |
+
"Battery", "Aerosol", "Scrap metal"
|
| 34 |
+
],
|
| 35 |
+
"Deposit Return (Pfand)": [s
|
| 36 |
+
"Drink can", "Clear plastic bottle", "Glass bottle", "Food Can"
|
| 37 |
+
]
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
# Bin colors in BGR format (for OpenCV)
|
| 41 |
+
bin_colors = {
|
| 42 |
+
"Yellow Bin (Gelbe Tonne)": (255, 255, 0), # Yellow
|
| 43 |
+
"Grey Bin (Restmüll)": (128, 128, 128), # Gray
|
| 44 |
+
"Green Bin (Biotonne)": (0, 255, 0), # Green
|
| 45 |
+
"Blue Bin (Papiertonne)": (0, 0, 250), # Blue (bright)
|
| 46 |
+
"Glascontainer": (0, 0, 0), # Black
|
| 47 |
+
"Hazardous Waste (Sondermüll)": (255, 0, 0), # Red
|
| 48 |
+
"Deposit Return (Pfand)": (255, 0, 255) # Purple/Magenta
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
class_to_bin = {cls: bin_type for bin_type, cls_list in bin_map.items() for cls in cls_list} #class name gives bin type
|
| 52 |
+
|
| 53 |
+
def display_result(image_to_segment):
|
| 54 |
+
|
| 55 |
+
# Load model
|
| 56 |
+
model_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'models', 'best_heavy_59classes.pt'))
|
| 57 |
+
model = YOLO(model_path)
|
| 58 |
+
|
| 59 |
+
# Resize image
|
| 60 |
+
image = cv2.resize(image_to_segment, (640,640))
|
| 61 |
+
|
| 62 |
+
# Run prediction
|
| 63 |
+
results = model(image_to_segment)
|
| 64 |
+
result = results[0]
|
| 65 |
+
|
| 66 |
+
# Get class names
|
| 67 |
+
class_names = model.names
|
| 68 |
+
|
| 69 |
+
# Inverse mapping: class name to bin
|
| 70 |
+
class_to_bin = {cls: bin_name for bin_name, class_list in bin_map.items() for cls in class_list}
|
| 71 |
+
|
| 72 |
+
# Handle case with no trash
|
| 73 |
+
if result.masks is None or result.boxes is None or len(result.boxes) == 0:
|
| 74 |
+
overlay = image.copy()
|
| 75 |
+
cv2.putText(overlay, "No trash detected!", (30, 60), cv2.FONT_HERSHEY_SIMPLEX, 1.5, (255, 0, 0), 3, cv2.LINE_AA)
|
| 76 |
+
return (overlay)
|
| 77 |
+
|
| 78 |
+
masks = result.masks.data.cpu().numpy()
|
| 79 |
+
boxes = result.boxes.xyxy.cpu().numpy() # [N, 4]
|
| 80 |
+
scores = result.boxes.conf.cpu().numpy() # [N]
|
| 81 |
+
class_ids = result.boxes.cls.cpu().numpy() # [N]
|
| 82 |
+
|
| 83 |
+
overlay = image.copy()
|
| 84 |
+
|
| 85 |
+
for i in range(len(class_ids)):
|
| 86 |
+
class_id = int(class_ids[i])
|
| 87 |
+
score = scores[i]
|
| 88 |
+
mask = masks[i]
|
| 89 |
+
box = boxes[i].astype(int)
|
| 90 |
+
|
| 91 |
+
class_name = class_names[class_id]
|
| 92 |
+
|
| 93 |
+
bin_type = next((bin_name for bin_name, items in bin_map.items() if class_name in items), "abcd")
|
| 94 |
+
color = bin_colors.get(bin_type, (255, 255, 255)) # fallback to white
|
| 95 |
+
|
| 96 |
+
# Apply colored mask (blended)
|
| 97 |
+
mask_3c = np.stack([mask] * 3, axis=-1) # [H, W, 3]
|
| 98 |
+
color_array = np.array(color, dtype=np.uint8).reshape(1, 1, 3)
|
| 99 |
+
colored_mask = (mask_3c * color_array).astype(np.uint8)
|
| 100 |
+
|
| 101 |
+
overlay = cv2.addWeighted(overlay, 1.0, colored_mask, 0.5, 0)
|
| 102 |
+
|
| 103 |
+
# Draw bounding box
|
| 104 |
+
cv2.rectangle(overlay, (box[0], box[1]), (box[2], box[3]), color, 2)
|
| 105 |
+
|
| 106 |
+
# Draw label (class name + score + bin)
|
| 107 |
+
label = f"{class_name} ({int(score * 100)}%)\n{bin_type}"
|
| 108 |
+
for j, line in enumerate(label.split("\n")):
|
| 109 |
+
text_pos = (box[0], box[1] - 10 - 20 * j)
|
| 110 |
+
cv2.putText(overlay, line, text_pos, cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2, cv2.LINE_AA)
|
| 111 |
+
|
| 112 |
+
return (overlay)
|
uv.lock
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|