import ntpath import os import sys import time from pathlib import Path from subprocess import PIPE, Popen import numpy as np from util import now_time from . import html, util try: import wandb except ImportError: print( 'Warning: wandb package cannot be found. The option "--use_wandb" will result in error.' ) if sys.version_info[0] == 2: VisdomExceptionBase = Exception else: VisdomExceptionBase = ConnectionError def save_images( webpage, visuals, image_path, aspect_ratio=1.0, width=256, use_wandb=False ): """Save images to the disk. Parameters: use_wandb: webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs image_path (str) -- the string is used to create image paths aspect_ratio (float) -- the aspect ratio of saved images width (int) -- the images will be resized to width x width This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. """ image_dir = webpage.get_image_dir() short_path = ntpath.basename(image_path[0]) name = os.path.splitext(short_path)[0] webpage.add_header(name) ims, txts, links = [], [], [] ims_dict = {} for label, im_data in visuals.items(): im = util.tensor2im(im_data) image_name = "%s_%s.png" % (name, label) save_path = Path(image_dir, image_name) util.save_image(im, save_path, aspect_ratio=aspect_ratio) ims.append(image_name) txts.append(label) links.append(image_name) if use_wandb: ims_dict[label] = wandb.Image(im) webpage.add_images(ims, txts, links, width=width) if use_wandb: wandb.log(ims_dict) class Visualizer: """This class includes several functions that can display/save images and print/save logging information. It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. """ def __init__(self, opt): """Initialize the Visualizer class Parameters: opt -- stores all the experiment flags; needs to be a subclass of BaseOptions Step 1: Cache the training/test options Step 2: connect to a visdom server Step 3: create an HTML object for saveing HTML filters Step 4: create a logging file to store training losses """ self.opt = opt # cache the option self.display_id = opt.display_id self.use_html = opt.isTrain and not opt.no_html self.win_size = opt.display_winsize self.name = opt.name self.port = opt.display_port self.saved = False self.use_wandb = opt.use_wandb self.wandb_project_name = opt.wandb_project_name self.current_epoch = 0 self.ncols = opt.display_ncols if ( self.display_id > 0 ): # connect to a visdom server given and import visdom self.vis = visdom.Visdom( server=opt.display_server, port=opt.display_port, env=opt.display_env ) if not self.vis.check_connection(): self.create_visdom_connections() if self.use_wandb: self.wandb_run = ( wandb.init(project=self.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run ) self.wandb_run._label(repo="CycleGAN") # create an HTML object at /web/; images will be saved under /web/images/ if self.use_html: self.web_dir = Path(opt.checkpoints_dir, opt.name, "web" + now_time()) self.img_dir = self.web_dir.joinpath("images") print("Create web directory %s..." % self.web_dir) util.mkdirs([self.web_dir, self.img_dir]) # create a logging file to store training losses self.log_name = Path(opt.checkpoints_dir, opt.name, "loss_log.txt") with open(self.log_name, "a") as log_file: now = time.strftime("%c") log_file.write( "================ Training Loss (%s) ================\n" % now ) def reset(self): """Reset the self.saved status""" self.saved = False def create_visdom_connections(self): """If the program could not connect to Visdom server, this function will start a new server at port < self.port >""" cmd = sys.executable + " -m visdom.server -p %d &>/dev/null &" % self.port print("\n\nCould not connect to Visdom server. \n Trying to start a server....") print("Command: %s" % cmd) Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) def display_current_results(self, visuals, epoch, save_result): """Display current results on visdom; save current results to an HTML file. Parameters: visuals (OrderedDict) - - dictionary of images to display or save epoch (int) - - the current epoch save_result (bool) - - if save the current results to an HTML file """ if self.display_id > 0: # show images in the browser using visdom ncols = self.ncols if ncols > 0: # show all the images in one visdom panel ncols = min(ncols, len(visuals)) h, w = next(iter(visuals.values())).shape[:2] table_css = """""" % ( w, h, ) # create a table css # create a table of images. title = self.name label_html = "" label_html_row = "" images = [] image_numpy = None idx = 0 for label, image in visuals.items(): image_numpy = util.tensor2im(image) label_html_row += "%s" % label images.append(image_numpy.transpose([2, 0, 1])) idx += 1 if idx % ncols == 0: label_html += "%s" % label_html_row label_html_row = "" white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 while idx % ncols != 0: images.append(white_image) label_html_row += "" idx += 1 if label_html_row != "": label_html += "%s" % label_html_row try: self.vis.images( images, nrow=ncols, win=self.display_id + 1, padding=2, opts=dict(title=title + " images"), ) label_html = "%s
" % label_html self.vis.text( table_css + label_html, win=self.display_id + 2, opts=dict(title=title + " labels"), ) except VisdomExceptionBase: self.create_visdom_connections() else: # show each image in a separate visdom panel; idx = 1 try: for label, image in visuals.items(): image_numpy = util.tensor2im(image) self.vis.image( image_numpy.transpose([2, 0, 1]), opts=dict(title=label), win=self.display_id + idx, ) idx += 1 except VisdomExceptionBase: self.create_visdom_connections() if self.use_wandb: columns = [key for key, _ in visuals.items()] columns.insert(0, "epoch") result_table = wandb.Table(columns=columns) table_row = [epoch] ims_dict = {} for label, image in visuals.items(): image_numpy = util.tensor2im(image) wandb_image = wandb.Image(image_numpy) table_row.append(wandb_image) ims_dict[label] = wandb_image self.wandb_run.log(ims_dict) if epoch != self.current_epoch: self.current_epoch = epoch result_table.add_data(*table_row) self.wandb_run.log({"Result": result_table}) if self.use_html and ( save_result or not self.saved ): # save images to an HTML file if they haven't been saved. self.saved = True # save images to the disk for label, image in visuals.items(): image_numpy = util.tensor2im(image) img_path = Path(self.img_dir, "epoch%.3d_%s.png" % (epoch, label)) util.save_image(image_numpy, img_path) # update website webpage = html.HTML( self.web_dir, "Experiment name = %s" % self.name, refresh=1 ) for n in range(epoch, 0, -1): webpage.add_header("epoch [%d]" % n) ims, txts, links = [], [], [] for label, image_numpy in visuals.items(): # image_numpy = util.tensor2im(image) img_path = "epoch%.3d_%s.png" % (n, label) ims.append(img_path) txts.append(label) links.append(img_path) webpage.add_images(ims, txts, links, width=self.win_size) webpage.save() def plot_current_losses(self, epoch, counter_ratio, losses): """display the current losses on visdom display: dictionary of error labels and values Parameters: epoch (int) -- current epoch counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 losses (OrderedDict) -- training losses stored in the format of (name, float) pairs """ if not hasattr(self, "plot_data"): self.plot_data = {"X": [], "Y": [], "legend": list(losses.keys())} self.plot_data["X"].append(epoch + counter_ratio) self.plot_data["Y"].append([losses[k] for k in self.plot_data["legend"]]) try: self.vis.line( X=np.stack( [np.array(self.plot_data["X"])] * len(self.plot_data["legend"]), 1 ), Y=np.array(self.plot_data["Y"]), opts={ "title": f"{self.name} loss over time", "legend": self.plot_data["legend"], "xlabel": "epoch", "ylabel": "loss", }, win=self.display_id, ) except VisdomExceptionBase: self.create_visdom_connections() if self.use_wandb: self.wandb_run.log(losses) # losses: same format as |losses| of plot_current_losses def print_current_losses(self, epoch, iters, losses, t_comp, t_data): """print current losses on console; also save the losses to the disk Parameters: epoch (int) -- current epoch iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) losses (OrderedDict) -- training losses stored in the format of (name, float) pairs t_comp (float) -- computational time per data point (normalized by batch_size) t_data (float) -- data loading time per data point (normalized by batch_size) """ message = f"(epoch: {epoch:>2d}, iters: {iters:>4d}, time: {t_comp:.3f}, data: {t_data:.3f})" for k, v in losses.items(): message += f" {k:s}: {v:.3f}" print(message) with open(self.log_name, "a") as log_file: log_file.write(f"{message:s}\n")