import os import gradio as gr import asyncio from langchain_core.prompts import PromptTemplate from langchain_community.document_loaders import PyPDFLoader from langchain_google_genai import ChatGoogleGenerativeAI import google.generativeai as genai from langchain.chains.question_answering import load_qa_chain import torch from transformers import AutoTokenizer, AutoModelForCausalLM # Gemini PDF QA System async def initialize_gemini(file_path, question): genai.configure(api_key=os.getenv("GOOGLE_API_KEY")) model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3) prompt_template = """Answer the question as precise as possible using the provided context. If the answer is not contained in the context, say "answer not available in context" \n\n Context: \n {context}?\n Question: \n {question} \n Answer: """ prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"]) if os.path.exists(file_path): pdf_loader = PyPDFLoader(file_path) pages = pdf_loader.load_and_split() context = "\n".join(str(page.page_content) for page in pages[:30]) stuff_chain = load_qa_chain(model, chain_type="stuff", prompt=prompt) stuff_answer = await stuff_chain.acall({"input_documents": pages, "question": question, "context": context}, return_only_outputs=True) return stuff_answer['output_text'] else: return "Error: Unable to process the document. Please ensure the PDF file is valid." # Improved Mistral Text Completion class MistralModel: def __init__(self): self.model_path = "nvidia/Mistral-NeMo-Minitron-8B-Base" self.tokenizer = AutoTokenizer.from_pretrained(self.model_path) self.device = 'cuda' if torch.cuda.is_available() else 'cpu' self.dtype = torch.bfloat16 self.model = AutoModelForCausalLM.from_pretrained(self.model_path, torch_dtype=self.dtype, device_map=self.device) def generate_text(self, prompt, max_length=200): # Improve the prompt for better context enhanced_prompt = f"Question: {prompt}\n\nAnswer: Let's approach this step-by-step:\n1." inputs = self.tokenizer.encode(enhanced_prompt, return_tensors='pt').to(self.model.device) # Generate with more nuanced parameters outputs = self.model.generate( inputs, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=3, top_k=50, top_p=0.95, temperature=0.7, do_sample=True ) return self.tokenizer.decode(outputs[0], skip_special_tokens=True) mistral_model = MistralModel() # Combined function for both models async def process_input(file, question): gemini_answer = await initialize_gemini(file.name, question) mistral_answer = mistral_model.generate_text(question) return gemini_answer, mistral_answer # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Enhanced PDF Question Answering and Text Completion System") input_file = gr.File(label="Upload PDF File (Optional)") input_question = gr.Textbox(label="Ask a question or provide a prompt") process_button = gr.Button("Process") output_text_gemini = gr.Textbox(label="Answer - Gemini (PDF-based if file uploaded)") output_text_mistral = gr.Textbox(label="Answer - Mistral (General knowledge)") process_button.click( fn=process_input, inputs=[input_file, input_question], outputs=[output_text_gemini, output_text_mistral] ) demo.launch()