File size: 36,815 Bytes
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
 
 
bf58491
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
64f514c
 
 
 
 
 
 
 
 
 
 
 
 
 
bf58491
 
 
 
 
 
64f514c
 
 
bf58491
64f514c
 
 
 
 
 
bf58491
64f514c
 
 
 
 
 
bf58491
 
 
 
 
 
 
 
 
64f514c
 
 
 
 
 
bf58491
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
64f514c
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
 
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
64f514c
 
 
 
 
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
bf58491
 
64f514c
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
 
 
 
 
 
 
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3dfb2f9
 
 
 
bf58491
 
3dfb2f9
 
c2eb006
bf58491
 
 
 
3dfb2f9
 
 
 
 
bf58491
 
 
 
 
 
 
 
 
 
 
 
64f514c
 
 
 
3dfb2f9
 
bf58491
3dfb2f9
bf58491
 
 
 
3dfb2f9
c2eb006
3dfb2f9
bf58491
 
 
 
 
3dfb2f9
bf58491
 
 
 
 
 
 
 
 
 
 
c2eb006
64f514c
 
bf58491
 
 
c2eb006
3dfb2f9
 
bf58491
 
3dfb2f9
 
bf58491
 
3dfb2f9
bf58491
 
3dfb2f9
bf58491
 
 
 
 
3dfb2f9
 
 
 
 
 
 
 
 
 
 
 
 
bf58491
3dfb2f9
 
 
 
bf58491
3dfb2f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2eb006
3dfb2f9
 
 
 
 
 
 
 
bf58491
3dfb2f9
 
 
 
 
 
64f514c
 
 
3dfb2f9
bf58491
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
# Copyright 2025 PixArt-Sigma Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import html
import inspect
import re
import urllib.parse as ul
import warnings
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from transformers import Gemma2PreTrainedModel, GemmaTokenizer, GemmaTokenizerFast

from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PixArtImageProcessor
from diffusers.loaders import SanaLoraLoaderMixin
from diffusers.models import AutoencoderDC, SanaTransformer2DModel
from diffusers.schedulers import DPMSolverMultistepScheduler
from diffusers.utils import (
    BACKENDS_MAPPING,
    USE_PEFT_BACKEND,
    is_bs4_available,
    is_ftfy_available,
    is_torch_xla_available,
    logging,
    replace_example_docstring,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import get_device, is_torch_version, randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import (
    ASPECT_RATIO_512_BIN,
    ASPECT_RATIO_1024_BIN,
)
from diffusers.pipelines.pixart_alpha.pipeline_pixart_sigma import ASPECT_RATIO_2048_BIN
from .pipeline_output import SiDPipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_bs4_available():
    from bs4 import BeautifulSoup

if is_ftfy_available():
    import ftfy


ASPECT_RATIO_4096_BIN = {
    "0.25": [2048.0, 8192.0],
    "0.26": [2048.0, 7936.0],
    "0.27": [2048.0, 7680.0],
    "0.28": [2048.0, 7424.0],
    "0.32": [2304.0, 7168.0],
    "0.33": [2304.0, 6912.0],
    "0.35": [2304.0, 6656.0],
    "0.4": [2560.0, 6400.0],
    "0.42": [2560.0, 6144.0],
    "0.48": [2816.0, 5888.0],
    "0.5": [2816.0, 5632.0],
    "0.52": [2816.0, 5376.0],
    "0.57": [3072.0, 5376.0],
    "0.6": [3072.0, 5120.0],
    "0.68": [3328.0, 4864.0],
    "0.72": [3328.0, 4608.0],
    "0.78": [3584.0, 4608.0],
    "0.82": [3584.0, 4352.0],
    "0.88": [3840.0, 4352.0],
    "0.94": [3840.0, 4096.0],
    "1.0": [4096.0, 4096.0],
    "1.07": [4096.0, 3840.0],
    "1.13": [4352.0, 3840.0],
    "1.21": [4352.0, 3584.0],
    "1.29": [4608.0, 3584.0],
    "1.38": [4608.0, 3328.0],
    "1.46": [4864.0, 3328.0],
    "1.67": [5120.0, 3072.0],
    "1.75": [5376.0, 3072.0],
    "2.0": [5632.0, 2816.0],
    "2.09": [5888.0, 2816.0],
    "2.4": [6144.0, 2560.0],
    "2.5": [6400.0, 2560.0],
    "2.89": [6656.0, 2304.0],
    "3.0": [6912.0, 2304.0],
    "3.11": [7168.0, 2304.0],
    "3.62": [7424.0, 2048.0],
    "3.75": [7680.0, 2048.0],
    "3.88": [7936.0, 2048.0],
    "4.0": [8192.0, 2048.0],
}

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import SanaPipeline

        >>> pipe = SanaPipeline.from_pretrained(
        ...     "Efficient-Large-Model/Sana_1600M_1024px_BF16_diffusers", torch_dtype=torch.float32
        ... )
        >>> pipe.to("cuda")
        >>> pipe.text_encoder.to(torch.bfloat16)
        >>> pipe.transformer = pipe.transformer.to(torch.bfloat16)

        >>> image = pipe(prompt='a cyberpunk cat with a neon sign that says "Sana"')[0]
        >>> image[0].save("output.png")
        ```
"""


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError(
            "Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
        )
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(
            inspect.signature(scheduler.set_timesteps).parameters.keys()
        )
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class SiDSanaPipeline(DiffusionPipeline, SanaLoraLoaderMixin):
    r"""
    Pipeline for text-to-image generation using [Sana](https://huggingface.co/papers/2410.10629).
    """

    # fmt: off
    bad_punct_regex = re.compile(r"[" + "#®•©™&@·º½¾¿¡§~" + r"\)" + r"\(" + r"\]" + r"\[" + r"\}" + r"\{" + r"\|" + "\\" + r"\/" + r"\*" + r"]{1,}")
    # fmt: on

    model_cpu_offload_seq = "text_encoder->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        tokenizer: Union[GemmaTokenizer, GemmaTokenizerFast],
        text_encoder: Gemma2PreTrainedModel,
        vae: AutoencoderDC,
        transformer: SanaTransformer2DModel,
        scheduler: DPMSolverMultistepScheduler,
    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer,
            text_encoder=text_encoder,
            vae=vae,
            transformer=transformer,
            scheduler=scheduler,
        )

        self.vae_scale_factor = (
            2 ** (len(self.vae.config.encoder_block_out_channels) - 1)
            if hasattr(self, "vae") and self.vae is not None
            else 32
        )
        self.image_processor = PixArtImageProcessor(
            vae_scale_factor=self.vae_scale_factor
        )

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def _get_gemma_prompt_embeds(
        self,
        prompt: Union[str, List[str]],
        device: torch.device,
        dtype: torch.dtype,
        clean_caption: bool = False,
        max_sequence_length: int = 300,
        complex_human_instruction: Optional[List[str]] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`, *optional*):
                torch device to place the resulting embeddings on
            clean_caption (`bool`, defaults to `False`):
                If `True`, the function will preprocess and clean the provided caption before encoding.
            max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
            complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
                If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
                the prompt.
        """
        prompt = [prompt] if isinstance(prompt, str) else prompt

        if getattr(self, "tokenizer", None) is not None:
            self.tokenizer.padding_side = "right"

        prompt = self._text_preprocessing(prompt, clean_caption=clean_caption)

        # prepare complex human instruction
        if not complex_human_instruction:
            max_length_all = max_sequence_length
        else:
            chi_prompt = "\n".join(complex_human_instruction)
            prompt = [chi_prompt + p for p in prompt]
            num_chi_prompt_tokens = len(self.tokenizer.encode(chi_prompt))
            max_length_all = num_chi_prompt_tokens + max_sequence_length - 2

        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=max_length_all,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids

        prompt_attention_mask = text_inputs.attention_mask
        prompt_attention_mask = prompt_attention_mask.to(device)

        prompt_embeds = self.text_encoder(
            text_input_ids.to(device), attention_mask=prompt_attention_mask
        )
        prompt_embeds = prompt_embeds[0].to(dtype=dtype, device=device)

        return prompt_embeds, prompt_attention_mask

    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        do_classifier_free_guidance: bool = True,
        negative_prompt: str = "",
        num_images_per_prompt: int = 1,
        device: Optional[torch.device] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        clean_caption: bool = False,
        max_sequence_length: int = 300,
        complex_human_instruction: Optional[List[str]] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds`
                instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). For
                PixArt-Alpha, this should be "".
            do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
                whether to use classifier free guidance or not
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                number of images that should be generated per prompt
            device: (`torch.device`, *optional*):
                torch device to place the resulting embeddings on
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. For Sana, it's should be the embeddings of the "" string.
            clean_caption (`bool`, defaults to `False`):
                If `True`, the function will preprocess and clean the provided caption before encoding.
            max_sequence_length (`int`, defaults to 300): Maximum sequence length to use for the prompt.
            complex_human_instruction (`list[str]`, defaults to `complex_human_instruction`):
                If `complex_human_instruction` is not empty, the function will use the complex Human instruction for
                the prompt.
        """

        if device is None:
            device = self._execution_device

        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        else:
            dtype = None

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, SanaLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if self.text_encoder is not None and USE_PEFT_BACKEND:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if getattr(self, "tokenizer", None) is not None:
            self.tokenizer.padding_side = "right"

        # See Section 3.1. of the paper.
        max_length = max_sequence_length
        select_index = [0] + list(range(-max_length + 1, 0))

        if prompt_embeds is None:
            prompt_embeds, prompt_attention_mask = self._get_gemma_prompt_embeds(
                prompt=prompt,
                device=device,
                dtype=dtype,
                clean_caption=clean_caption,
                max_sequence_length=max_sequence_length,
                complex_human_instruction=complex_human_instruction,
            )

            prompt_embeds = prompt_embeds[:, select_index]
            prompt_attention_mask = prompt_attention_mask[:, select_index]

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(
            bs_embed * num_images_per_prompt, seq_len, -1
        )
        prompt_attention_mask = prompt_attention_mask.view(bs_embed, -1)
        prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = (
                [negative_prompt] * batch_size
                if isinstance(negative_prompt, str)
                else negative_prompt
            )
            negative_prompt_embeds, negative_prompt_attention_mask = (
                self._get_gemma_prompt_embeds(
                    prompt=negative_prompt,
                    device=device,
                    dtype=dtype,
                    clean_caption=clean_caption,
                    max_sequence_length=max_sequence_length,
                    complex_human_instruction=False,
                )
            )

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(
                dtype=dtype, device=device
            )

            negative_prompt_embeds = negative_prompt_embeds.repeat(
                1, num_images_per_prompt, 1
            )
            negative_prompt_embeds = negative_prompt_embeds.view(
                batch_size * num_images_per_prompt, seq_len, -1
            )

            negative_prompt_attention_mask = negative_prompt_attention_mask.view(
                bs_embed, -1
            )
            negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(
                num_images_per_prompt, 1
            )
        else:
            negative_prompt_embeds = None
            negative_prompt_attention_mask = None

        if self.text_encoder is not None:
            if isinstance(self, SanaLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return (
            prompt_embeds,
            prompt_attention_mask,
            negative_prompt_embeds,
            negative_prompt_attention_mask,
        )

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(
            inspect.signature(self.scheduler.step).parameters.keys()
        )
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        callback_on_step_end_tensor_inputs=None,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
    ):
        if height % 32 != 0 or width % 32 != 0:
            raise ValueError(
                f"`height` and `width` have to be divisible by 32 but are {height} and {width}."
            )

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs
            for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (
            not isinstance(prompt, str) and not isinstance(prompt, list)
        ):
            raise ValueError(
                f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
            )

        if prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError(
                "Must provide `prompt_attention_mask` when specifying `prompt_embeds`."
            )

        if (
            negative_prompt_embeds is not None
            and negative_prompt_attention_mask is None
        ):
            raise ValueError(
                "Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )
            if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
                raise ValueError(
                    "`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
                    f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
                    f" {negative_prompt_attention_mask.shape}."
                )

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._text_preprocessing
    def _text_preprocessing(self, text, clean_caption=False):
        if clean_caption and not is_bs4_available():
            logger.warning(
                BACKENDS_MAPPING["bs4"][-1].format("Setting `clean_caption=True`")
            )
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if clean_caption and not is_ftfy_available():
            logger.warning(
                BACKENDS_MAPPING["ftfy"][-1].format("Setting `clean_caption=True`")
            )
            logger.warning("Setting `clean_caption` to False...")
            clean_caption = False

        if not isinstance(text, (tuple, list)):
            text = [text]

        def process(text: str):
            if clean_caption:
                text = self._clean_caption(text)
                text = self._clean_caption(text)
            else:
                text = text.lower().strip()
            return text

        return [process(t) for t in text]

    # Copied from diffusers.pipelines.deepfloyd_if.pipeline_if.IFPipeline._clean_caption
    def _clean_caption(self, caption):
        caption = str(caption)
        caption = ul.unquote_plus(caption)
        caption = caption.strip().lower()
        caption = re.sub("<person>", "person", caption)
        # urls:
        caption = re.sub(
            r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        caption = re.sub(
            r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))",  # noqa
            "",
            caption,
        )  # regex for urls
        # html:
        caption = BeautifulSoup(caption, features="html.parser").text

        # @<nickname>
        caption = re.sub(r"@[\w\d]+\b", "", caption)

        # 31C0—31EF CJK Strokes
        # 31F0—31FF Katakana Phonetic Extensions
        # 3200—32FF Enclosed CJK Letters and Months
        # 3300—33FF CJK Compatibility
        # 3400—4DBF CJK Unified Ideographs Extension A
        # 4DC0—4DFF Yijing Hexagram Symbols
        # 4E00—9FFF CJK Unified Ideographs
        caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
        caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
        caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
        caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
        caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
        caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
        caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
        #######################################################

        # все виды тире / all types of dash --> "-"
        caption = re.sub(
            r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+",  # noqa
            "-",
            caption,
        )

        # кавычки к одному стандарту
        caption = re.sub(r"[`´«»“”¨]", '"', caption)
        caption = re.sub(r"[‘’]", "'", caption)

        # &quot;
        caption = re.sub(r"&quot;?", "", caption)
        # &amp
        caption = re.sub(r"&amp", "", caption)

        # ip addresses:
        caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)

        # article ids:
        caption = re.sub(r"\d:\d\d\s+$", "", caption)

        # \n
        caption = re.sub(r"\\n", " ", caption)

        # "#123"
        caption = re.sub(r"#\d{1,3}\b", "", caption)
        # "#12345.."
        caption = re.sub(r"#\d{5,}\b", "", caption)
        # "123456.."
        caption = re.sub(r"\b\d{6,}\b", "", caption)
        # filenames:
        caption = re.sub(
            r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption
        )

        #
        caption = re.sub(r"[\"\']{2,}", r'"', caption)  # """AUSVERKAUFT"""
        caption = re.sub(r"[\.]{2,}", r" ", caption)  # """AUSVERKAUFT"""

        caption = re.sub(
            self.bad_punct_regex, r" ", caption
        )  # ***AUSVERKAUFT***, #AUSVERKAUFT
        caption = re.sub(r"\s+\.\s+", r" ", caption)  # " . "

        # this-is-my-cute-cat / this_is_my_cute_cat
        regex2 = re.compile(r"(?:\-|\_)")
        if len(re.findall(regex2, caption)) > 3:
            caption = re.sub(regex2, " ", caption)

        caption = ftfy.fix_text(caption)
        caption = html.unescape(html.unescape(caption))

        caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption)  # jc6640
        caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption)  # jc6640vc
        caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption)  # 6640vc231

        caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
        caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
        caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
        caption = re.sub(
            r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption
        )
        caption = re.sub(r"\bpage\s+\d+\b", "", caption)

        caption = re.sub(
            r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption
        )  # j2d1a2a...

        caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)

        caption = re.sub(r"\b\s+\:\s+", r": ", caption)
        caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
        caption = re.sub(r"\s+", " ", caption)

        caption.strip()

        caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
        caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
        caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
        caption = re.sub(r"^\.\S+$", "", caption)

        return caption.strip()

    def prepare_latents(
        self,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        return latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def attention_kwargs(self):
        return self._attention_kwargs

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1.0

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 28,
        guidance_scale: float = 1.0,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        prompt_attention_mask: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        max_sequence_length: int = 256,
        noise_type: str = "fresh",  # 'fresh', 'ddim', 'fixed'
        time_scale: float = 1000.0,
        use_resolution_binning: bool = True,
    ):
        if use_resolution_binning:
            if self.transformer.config.sample_size == 128:
                aspect_ratio_bin = ASPECT_RATIO_4096_BIN
            elif self.transformer.config.sample_size == 64:
                aspect_ratio_bin = ASPECT_RATIO_2048_BIN
            elif self.transformer.config.sample_size == 32:
                aspect_ratio_bin = ASPECT_RATIO_1024_BIN
            elif self.transformer.config.sample_size == 16:
                aspect_ratio_bin = ASPECT_RATIO_512_BIN
            else:
                raise ValueError("Invalid sample size")
            orig_height, orig_width = height, width
            height, width = self.image_processor.classify_height_width_bin(
                height, width, ratios=aspect_ratio_bin
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            prompt_embeds=prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        (
            prompt_embeds,
            prompt_attention_mask,
            _,
            _,
        ) = self.encode_prompt(
            prompt,
            prompt_embeds=prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
        )
        # 3. Prepare latents
        num_channels_latents = self.transformer.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 4. SiD sampling loop
        # Initialize D_x
        D_x = torch.zeros_like(latents).to(latents.device)
        # Use fixed noise for now (can be extended as needed)
        initial_latents = latents.clone()
        for i in range(num_inference_steps):
            if noise_type == "fresh":
                noise = (
                    latents if i == 0 else torch.randn_like(latents).to(latents.device)
                )
            elif noise_type == "ddim":
                noise = (
                    latents if i == 0 else ((latents - (1.0 - t) * D_x) / t).detach()
                )
            elif noise_type == "fixed":
                noise = initial_latents  # Use the initial, unmodified latents
            else:
                raise ValueError(f"Unknown noise_type: {noise_type}")

            # Compute t value, normalized to [0, 1]
            init_timesteps = 999
            scalar_t = float(init_timesteps) * (
                1.0 - float(i) / float(num_inference_steps)
            )
            t_val = scalar_t / 999.0
            t = torch.full(
                (latents.shape[0],), t_val, device=latents.device, dtype=latents.dtype
            )
            t_flattern = t.flatten()
            if t.numel() > 1:
                t = t.view(-1, 1, 1, 1)

            latents = (1.0 - t) * D_x + t * noise
            latent_model_input = latents

            flow_pred = self.transformer(
                hidden_states=latent_model_input,
                encoder_hidden_states=prompt_embeds,
                encoder_attention_mask=prompt_attention_mask,
                timestep=time_scale * t_flattern,
                return_dict=False,
            )[0]
            D_x = latents - (
                t * flow_pred
                if torch.numel(t) == 1
                else t.view(-1, 1, 1, 1) * flow_pred
            )

        # 5. Decode latent to image
        image = self.vae.decode(
            (D_x / self.vae.config.scaling_factor),
            return_dict=False,
        )[0]
        if use_resolution_binning:
            image = self.image_processor.resize_and_crop_tensor(
                image, orig_height, orig_width
            )
        image = self.image_processor.postprocess(image, output_type=output_type)
        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image,)

        return SiDPipelineOutput(images=image)