import numpy as np import torch def all_to_onehot(masks, labels): if len(masks.shape) == 3: Ms = np.zeros( (len(labels), masks.shape[0], masks.shape[1], masks.shape[2]), dtype=np.uint8, ) else: Ms = np.zeros((len(labels), masks.shape[0], masks.shape[1]), dtype=np.uint8) for ni, l in enumerate(labels): Ms[ni] = (masks == l).astype(np.uint8) return Ms class MaskMapper: """ This class is used to convert a indexed-mask to a one-hot representation. It also takes care of remapping non-continuous indices It has two modes: 1. Default. Only masks with new indices are supposed to go into the remapper. This is also the case for YouTubeVOS. i.e., regions with index 0 are not "background", but "don't care". 2. Exhaustive. Regions with index 0 are considered "background". Every single pixel is considered to be "labeled". """ def __init__(self): self.labels = [] self.remappings = {} # if coherent, no mapping is required self.coherent = True def clear_labels(self): self.labels = [] self.remappings = {} # if coherent, no mapping is required self.coherent = True def convert_mask(self, mask, exhaustive=False): # mask is in index representation, H*W numpy array labels = np.unique(mask).astype(np.uint8) labels = labels[labels != 0].tolist() new_labels = list(set(labels) - set(self.labels)) if not exhaustive: assert len(new_labels) == len( labels ), "Old labels found in non-exhaustive mode" # add new remappings for i, l in enumerate(new_labels): self.remappings[l] = i + len(self.labels) + 1 if self.coherent and i + len(self.labels) + 1 != l: self.coherent = False if exhaustive: new_mapped_labels = range(1, len(self.labels) + len(new_labels) + 1) else: if self.coherent: new_mapped_labels = new_labels else: new_mapped_labels = range( len(self.labels) + 1, len(self.labels) + len(new_labels) + 1 ) self.labels.extend(new_labels) mask = torch.from_numpy(all_to_onehot(mask, self.labels)).float() # mask num_objects*H*W return mask, new_mapped_labels def remap_index_mask(self, mask): # mask is in index representation, H*W numpy array if self.coherent: return mask new_mask = np.zeros_like(mask) for l, i in self.remappings.items(): new_mask[mask == i] = l return new_mask