import os import time import requests import sys import json import gradio as gr import numpy as np import torch import torchvision import pims from export_onnx_model import run_export from onnxruntime.quantization import QuantType from onnxruntime.quantization.quantize import quantize_dynamic sys.path.append(sys.path[0] + "/tracker") sys.path.append(sys.path[0] + "/tracker/model") from track_anything import TrackingAnything from track_anything import parse_augment from utils.painter import mask_painter from utils.blur import blur_frames_and_write # download checkpoints def download_checkpoint(url, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): print("Downloading checkpoints...") response = requests.get(url, stream=True) with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) print("Download successful.") return filepath # convert points input to prompt state def get_prompt(click_state, click_input): inputs = json.loads(click_input) points = click_state[0] labels = click_state[1] for input in inputs: points.append(input[:2]) labels.append(input[2]) click_state[0] = points click_state[1] = labels prompt = { "prompt_type": ["click"], "input_point": click_state[0], "input_label": click_state[1], "multimask_output": "False", } return prompt # extract frames from upload video def get_frames_from_video(video_input, video_state): """ Args: video_path:str timestamp:float64 Return [[0:nearest_frame], [nearest_frame:], nearest_frame] """ video_path = video_input frames = [] user_name = time.time() operation_log = [ ("", ""), ( "Video uploaded. Click the image for adding targets to track and blur.", "Normal", ), ] try: frames = pims.Video(video_path) fps = frames.frame_rate image_size = (frames.shape[1], frames.shape[2]) except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: print("read_frame_source:{} error. {}\n".format(video_path, str(e))) # initialize video_state video_state = { "user_name": user_name, "video_name": os.path.split(video_path)[-1], "origin_images": frames, "painted_images": [0] * len(frames), "masks": [0] * len(frames), "logits": [None] * len(frames), "select_frame_number": 0, "fps": fps, } video_info = "Video Name: {}, FPS: {}, Total Frames: {}, Image Size:{}".format( video_state["video_name"], video_state["fps"], len(frames), image_size ) model.samcontroler.sam_controler.reset_image() model.samcontroler.sam_controler.set_image(video_state["origin_images"][0]) return ( video_state, video_info, video_state["origin_images"][0], gr.update(visible=True, maximum=len(frames), value=1), gr.update(visible=True, maximum=len(frames), value=len(frames)), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True, value=operation_log), ) def run_example(example): return video_input # get the select frame from gradio slider def select_template(image_selection_slider, video_state, interactive_state): # images = video_state[1] image_selection_slider -= 1 video_state["select_frame_number"] = image_selection_slider # once select a new template frame, set the image in sam model.samcontroler.sam_controler.reset_image() model.samcontroler.sam_controler.set_image( video_state["origin_images"][image_selection_slider] ) # update the masks when select a new template frame operation_log = [ ("", ""), ( "Select frame {}. Try click image and add mask for tracking.".format( image_selection_slider ), "Normal", ), ] return ( video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, ) # set the tracking end frame def set_end_number(track_pause_number_slider, video_state, interactive_state): interactive_state["track_end_number"] = track_pause_number_slider operation_log = [ ("", ""), ( "Set the tracking finish at frame {}".format(track_pause_number_slider), "Normal", ), ] return ( interactive_state, operation_log, ) def get_resize_ratio(resize_ratio_slider, interactive_state): interactive_state["resize_ratio"] = resize_ratio_slider return interactive_state def get_blur_strength(blur_strength_slider, interactive_state): interactive_state["blur_strength"] = blur_strength_slider return interactive_state # use sam to get the mask def sam_refine( video_state, point_prompt, click_state, interactive_state, evt: gr.SelectData ): """ Args: template_frame: PIL.Image point_prompt: flag for positive or negative button click click_state: [[points], [labels]] """ if point_prompt == "Positive": coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) interactive_state["positive_click_times"] += 1 else: coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) interactive_state["negative_click_times"] += 1 # prompt for sam model model.samcontroler.sam_controler.reset_image() model.samcontroler.sam_controler.set_image( video_state["origin_images"][video_state["select_frame_number"]] ) prompt = get_prompt(click_state=click_state, click_input=coordinate) mask, logit, painted_image = model.first_frame_click( image=video_state["origin_images"][video_state["select_frame_number"]], points=np.array(prompt["input_point"]), labels=np.array(prompt["input_label"]), multimask=prompt["multimask_output"], ) video_state["masks"][video_state["select_frame_number"]] = mask video_state["logits"][video_state["select_frame_number"]] = logit video_state["painted_images"][video_state["select_frame_number"]] = painted_image operation_log = [ ("", ""), ( "Use SAM for segment. You can try add positive and negative points by clicking. Or press Clear clicks button to refresh the image. Press Add mask button when you are satisfied with the segment", "Normal", ), ] return painted_image, video_state, interactive_state, operation_log def add_multi_mask(video_state, interactive_state, mask_dropdown): try: mask = video_state["masks"][video_state["select_frame_number"]] interactive_state["multi_mask"]["masks"].append(mask) interactive_state["multi_mask"]["mask_names"].append( "mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])) ) mask_dropdown.append( "mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"])) ) select_frame, run_status = show_mask( video_state, interactive_state, mask_dropdown ) operation_log = [ ("", ""), ( "Added a mask, use the mask select for target tracking or blurring.", "Normal", ), ] except Exception: operation_log = [ ("Please click the left image to generate mask.", "Error"), ("", ""), ] return ( interactive_state, gr.update( choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown ), select_frame, [[], []], operation_log, ) def clear_click(video_state, click_state): click_state = [[], []] template_frame = video_state["origin_images"][video_state["select_frame_number"]] operation_log = [ ("", ""), ("Clear points history and refresh the image.", "Normal"), ] return template_frame, click_state, operation_log def remove_multi_mask(interactive_state, mask_dropdown): interactive_state["multi_mask"]["mask_names"] = [] interactive_state["multi_mask"]["masks"] = [] operation_log = [("", ""), ("Remove all mask, please add new masks", "Normal")] return interactive_state, gr.update(choices=[], value=[]), operation_log def show_mask(video_state, interactive_state, mask_dropdown): mask_dropdown.sort() select_frame = video_state["origin_images"][video_state["select_frame_number"]] for i in range(len(mask_dropdown)): mask_number = int(mask_dropdown[i].split("_")[1]) - 1 mask = interactive_state["multi_mask"]["masks"][mask_number] select_frame = mask_painter( select_frame, mask.astype("uint8"), mask_color=mask_number + 2 ) operation_log = [ ("", ""), ("Select {} for tracking or blurring".format(mask_dropdown), "Normal"), ] return select_frame, operation_log # tracking vos def vos_tracking_video(video_state, interactive_state, mask_dropdown): operation_log = [ ("", ""), ( "Track the selected masks, and then you can select the masks for blurring.", "Normal", ), ] model.xmem.clear_memory() if interactive_state["track_end_number"]: following_frames = video_state["origin_images"][ video_state["select_frame_number"]: interactive_state["track_end_number"] ] else: following_frames = video_state["origin_images"][ video_state["select_frame_number"]: ] if interactive_state["multi_mask"]["masks"]: if len(mask_dropdown) == 0: mask_dropdown = ["mask_001"] mask_dropdown.sort() template_mask = interactive_state["multi_mask"]["masks"][ int(mask_dropdown[0].split("_")[1]) - 1 ] * (int(mask_dropdown[0].split("_")[1])) for i in range(1, len(mask_dropdown)): mask_number = int(mask_dropdown[i].split("_")[1]) - 1 template_mask = np.clip( template_mask + interactive_state["multi_mask"]["masks"][mask_number] * (mask_number + 1), 0, mask_number + 1, ) video_state["masks"][video_state["select_frame_number"]] = template_mask else: template_mask = video_state["masks"][video_state["select_frame_number"]] # operation error if len(np.unique(template_mask)) == 1: template_mask[0][0] = 1 operation_log = [ ( "Error! Please add at least one mask to track by clicking the left image.", "Error", ), ("", ""), ] # return video_output, video_state, interactive_state, operation_error output_path = "./output/track/{}".format(video_state["video_name"]) fps = video_state["fps"] masks, logits, painted_images = model.generator( images=following_frames, template_mask=template_mask, write=True, fps=fps, output_path=output_path ) # clear GPU memory model.xmem.clear_memory() if interactive_state["track_end_number"]: video_state["masks"][ video_state["select_frame_number"]: interactive_state["track_end_number"] ] = masks video_state["logits"][ video_state["select_frame_number"]: interactive_state["track_end_number"] ] = logits video_state["painted_images"][ video_state["select_frame_number"]: interactive_state["track_end_number"] ] = painted_images else: video_state["masks"][video_state["select_frame_number"]:] = masks video_state["logits"][video_state["select_frame_number"]:] = logits video_state["painted_images"][ video_state["select_frame_number"]: ] = painted_images interactive_state["inference_times"] += 1 print( "For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format( interactive_state["inference_times"], interactive_state["positive_click_times"] + interactive_state["negative_click_times"], interactive_state["positive_click_times"], interactive_state["negative_click_times"], ) ) return output_path, video_state, interactive_state, operation_log def blur_video(video_state, interactive_state, mask_dropdown): operation_log = [("", ""), ("Removed the selected masks.", "Normal")] frames = np.asarray(video_state["origin_images"])[ video_state["select_frame_number"]:interactive_state["track_end_number"] ] fps = video_state["fps"] output_path = "./output/blur/{}".format(video_state["video_name"]) blur_masks = np.asarray(video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]]) if len(mask_dropdown) == 0: mask_dropdown = ["mask_001"] mask_dropdown.sort() # convert mask_dropdown to mask numbers blur_mask_numbers = [ int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown)) ] # interate through all masks and remove the masks that are not in mask_dropdown unique_masks = np.unique(blur_masks) num_masks = len(unique_masks) - 1 for i in range(1, num_masks + 1): if i in blur_mask_numbers: continue blur_masks[blur_masks == i] = 0 # blur video try: blur_frames_and_write( frames, blur_masks, ratio=interactive_state["resize_ratio"], strength=interactive_state["blur_strength"], fps=fps, output_path=output_path ) except Exception as e: print("Exception ", e) operation_log = [ ( "Error! You are trying to blur without masks input. Please track the selected mask first, and then press blur. To speed up, please use the resize ratio to scale down the image size.", "Error", ), ("", ""), ] return output_path, video_state, interactive_state, operation_log # generate video after vos inference def generate_video_from_frames(frames, output_path, fps=30): """ Generates a video from a list of frames. Args: frames (list of numpy arrays): The frames to include in the video. output_path (str): The path to save the generated video. fps (int, optional): The frame rate of the output video. Defaults to 30. """ frames = torch.from_numpy(np.asarray(frames)) if not os.path.exists(os.path.dirname(output_path)): os.makedirs(os.path.dirname(output_path)) torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264") return output_path # convert to onnx quantized model def convert_to_onnx(args, checkpoint, quantized=True): """ Convert the model to onnx format. Args: model (nn.Module): The model to convert. output_path (str): The path to save the onnx model. input_shape (tuple): The input shape of the model. quantized (bool, optional): Whether to quantize the model. Defaults to True. """ onnx_output_path = f"{checkpoint.split('.')[-2]}.onnx" quant_output_path = f"{checkpoint.split('.')[-2]}_quant.onnx" print("Converting to ONNX quantized model...") if not (os.path.exists(onnx_output_path)): run_export( model_type=args.sam_model_type, checkpoint=checkpoint, opset=16, output=onnx_output_path, return_single_mask=True ) if quantized and not (os.path.exists(quant_output_path)): quantize_dynamic( model_input=onnx_output_path, model_output=quant_output_path, optimize_model=True, per_channel=False, reduce_range=False, weight_type=QuantType.QUInt8, ) return quant_output_path if quantized else onnx_output_path # args, defined in track_anything.py args = parse_augment() # check and download checkpoints if needed SAM_checkpoint_dict = { "vit_h": "sam_vit_h_4b8939.pth", "vit_l": "sam_vit_l_0b3195.pth", "vit_b": "sam_vit_b_01ec64.pth", "vit_t": "mobile_sam.pt", } SAM_checkpoint_url_dict = { "vit_h": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", "vit_l": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", "vit_b": "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth", "vit_t": "https://github.com/ChaoningZhang/MobileSAM/raw/master/weights/mobile_sam.pt", } sam_checkpoint = SAM_checkpoint_dict[args.sam_model_type] sam_checkpoint_url = SAM_checkpoint_url_dict[args.sam_model_type] xmem_checkpoint = "XMem-s012.pth" xmem_checkpoint_url = ( "https://github.com/hkchengrex/XMem/releases/download/v1.0/XMem-s012.pth" ) # initialize SAM, XMem folder = "checkpoints" sam_pt_checkpoint = download_checkpoint(sam_checkpoint_url, folder, sam_checkpoint) xmem_checkpoint = download_checkpoint(xmem_checkpoint_url, folder, xmem_checkpoint) if args.sam_model_type == "vit_t": sam_onnx_checkpoint = convert_to_onnx(args, sam_pt_checkpoint, quantized=True) else: sam_onnx_checkpoint = "" model = TrackingAnything(sam_pt_checkpoint, sam_onnx_checkpoint, xmem_checkpoint, args) title = """

Blur-Anything

""" description = """

Gradio demo for Blur Anything, a flexible and interactive tool for video object tracking, segmentation, and blurring. To use it, simply upload your video, or click one of the examples to load them. Code: https://github.com/Y-T-G/Blur-Anything Duplicate Space

""" with gr.Blocks() as iface: """ state for """ click_state = gr.State([[], []]) interactive_state = gr.State( { "inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": args.mask_save, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": None, "resize_ratio": 1, "blur_strength": 3, } ) video_state = gr.State( { "user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "blur_masks": None, "logits": None, "select_frame_number": 0, "fps": 30, } ) gr.Markdown(title) gr.Markdown(description) with gr.Row(): # for user video input with gr.Column(): with gr.Row(): video_input = gr.Video() with gr.Column(): video_info = gr.Textbox(label="Video Info") resize_info = gr.Textbox( value="You can use the resize ratio slider to scale down the original image to around 360P resolution for faster processing.", label="Tips for running this demo.", ) resize_ratio_slider = gr.Slider( minimum=0.02, maximum=1, step=0.02, value=1, label="Resize ratio", visible=True, ) with gr.Row(): # put the template frame under the radio button with gr.Column(): # extract frames with gr.Column(): extract_frames_button = gr.Button( value="Get video info", interactive=True, variant="primary" ) # click points settins, negative or positive, mode continuous or single with gr.Row(): with gr.Row(): point_prompt = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point Prompt", interactive=True, visible=False, ) remove_mask_button = gr.Button( value="Remove mask", interactive=True, visible=False ) clear_button_click = gr.Button( value="Clear Clicks", interactive=True, visible=False ) Add_mask_button = gr.Button( value="Add mask", interactive=True, visible=False ) template_frame = gr.Image( type="pil", interactive=True, elem_id="template_frame", visible=False, ) image_selection_slider = gr.Slider( minimum=1, maximum=100, step=1, value=1, label="Image Selection", visible=False, ) track_pause_number_slider = gr.Slider( minimum=1, maximum=100, step=1, value=1, label="Track end frames", visible=False, ) with gr.Column(): run_status = gr.HighlightedText( value=[ ("Text", "Error"), ("to be", "Label 2"), ("highlighted", "Label 3"), ], visible=False, ) mask_dropdown = gr.Dropdown( multiselect=True, value=[], label="Mask selection", info=".", visible=False, ) video_output = gr.Video(visible=False) with gr.Row(): tracking_video_predict_button = gr.Button( value="Tracking", visible=False ) blur_video_predict_button = gr.Button( value="Blur", visible=False ) with gr.Row(): blur_strength_slider = gr.Slider( minimum=3, maximum=15, step=2, value=3, label="Blur Strength", visible=False, ) # first step: get the video information extract_frames_button.click( fn=get_frames_from_video, inputs=[video_input, video_state], outputs=[ video_state, video_info, template_frame, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button, blur_video_predict_button, blur_strength_slider, run_status, ], ) # second step: select images from slider image_selection_slider.release( fn=select_template, inputs=[image_selection_slider, video_state, interactive_state], outputs=[template_frame, video_state, interactive_state, run_status], api_name="select_image", ) track_pause_number_slider.release( fn=set_end_number, inputs=[track_pause_number_slider, video_state, interactive_state], outputs=[interactive_state, run_status], api_name="end_image", ) resize_ratio_slider.release( fn=get_resize_ratio, inputs=[resize_ratio_slider, interactive_state], outputs=[interactive_state], api_name="resize_ratio", ) blur_strength_slider.release( fn=get_blur_strength, inputs=[blur_strength_slider, interactive_state], outputs=[interactive_state], api_name="blur_strength", ) # click select image to get mask using sam template_frame.select( fn=sam_refine, inputs=[video_state, point_prompt, click_state, interactive_state], outputs=[template_frame, video_state, interactive_state, run_status], ) # add different mask Add_mask_button.click( fn=add_multi_mask, inputs=[video_state, interactive_state, mask_dropdown], outputs=[ interactive_state, mask_dropdown, template_frame, click_state, run_status, ], ) remove_mask_button.click( fn=remove_multi_mask, inputs=[interactive_state, mask_dropdown], outputs=[interactive_state, mask_dropdown, run_status], ) # tracking video from select image and mask tracking_video_predict_button.click( fn=vos_tracking_video, inputs=[video_state, interactive_state, mask_dropdown], outputs=[video_output, video_state, interactive_state, run_status], ) # tracking video from select image and mask blur_video_predict_button.click( fn=blur_video, inputs=[video_state, interactive_state, mask_dropdown], outputs=[video_output, video_state, interactive_state, run_status], ) # click to get mask mask_dropdown.change( fn=show_mask, inputs=[video_state, interactive_state, mask_dropdown], outputs=[template_frame, run_status], ) # clear input video_input.clear( lambda: ( { "user_name": "", "video_name": "", "origin_images": None, "painted_images": None, "masks": None, "blur_masks": None, "logits": None, "select_frame_number": 0, "fps": 30, }, { "inference_times": 0, "negative_click_times": 0, "positive_click_times": 0, "mask_save": args.mask_save, "multi_mask": {"mask_names": [], "masks": []}, "track_end_number": 0, "resize_ratio": 1, "blur_strength": 3, }, [[], []], None, None, gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False, value=[]), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), ), [], [ video_state, interactive_state, click_state, video_output, template_frame, tracking_video_predict_button, image_selection_slider, track_pause_number_slider, point_prompt, clear_button_click, Add_mask_button, template_frame, tracking_video_predict_button, video_output, mask_dropdown, remove_mask_button, blur_video_predict_button, blur_strength_slider, run_status, ], queue=False, show_progress=False, ) # points clear clear_button_click.click( fn=clear_click, inputs=[ video_state, click_state, ], outputs=[template_frame, click_state, run_status], ) # set example gr.Markdown("## Examples") gr.Examples( examples=[ os.path.join(os.path.dirname(__file__), "./data/", test_sample) for test_sample in [ "sample-1.mp4", "sample-2.mp4", ] ], fn=run_example, inputs=[video_input], outputs=[video_input], ) iface.queue(concurrency_count=1) iface.launch( debug=True, enable_queue=True )