from torch.nn.functional import * from torch.nn.functional import ( _mha_shape_check, _canonical_mask, _none_or_dtype, _in_projection_packed, ) def multi_head_attention_forward_patched( query, key, value, embed_dim_to_check: int, num_heads: int, in_proj_weight, in_proj_bias: Optional[Tensor], bias_k: Optional[Tensor], bias_v: Optional[Tensor], add_zero_attn: bool, dropout_p: float, out_proj_weight: Tensor, out_proj_bias: Optional[Tensor], training: bool = True, key_padding_mask: Optional[Tensor] = None, need_weights: bool = True, attn_mask: Optional[Tensor] = None, use_separate_proj_weight: bool = False, q_proj_weight: Optional[Tensor] = None, k_proj_weight: Optional[Tensor] = None, v_proj_weight: Optional[Tensor] = None, static_k: Optional[Tensor] = None, static_v: Optional[Tensor] = None, average_attn_weights: bool = True, is_causal: bool = False, cache=None, ) -> Tuple[Tensor, Optional[Tensor]]: # set up shape vars _, _, embed_dim = query.shape attn_mask = _canonical_mask( mask=attn_mask, mask_name="attn_mask", other_type=None, other_name="", target_type=query.dtype, check_other=False, ) head_dim = embed_dim // num_heads proj_qkv = linear(query, in_proj_weight, in_proj_bias) proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2] if cache["first_infer"] == 1: cache["k"][cache["stage"]] = k cache["v"][cache["stage"]] = v else: cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0) cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0) k = cache["k"][cache["stage"]] v = cache["v"][cache["stage"]] cache["stage"] = (cache["stage"] + 1) % cache["all_stage"] attn_mask = _canonical_mask( mask=attn_mask, mask_name="attn_mask", other_type=None, other_name="", target_type=q.dtype, check_other=False, ) attn_mask = attn_mask.unsqueeze(0) q = q.view(-1, num_heads, head_dim).transpose(0, 1) k = k.view(-1, num_heads, head_dim).transpose(0, 1) v = v.view(-1, num_heads, head_dim).transpose(0, 1) dropout_p = 0.0 attn_mask = attn_mask.unsqueeze(0) q = q.view(num_heads, -1, head_dim).unsqueeze(0) k = k.view(num_heads, -1, head_dim).unsqueeze(0) v = v.view(num_heads, -1, head_dim).unsqueeze(0) attn_output = scaled_dot_product_attention( q, k, v, attn_mask, dropout_p, is_causal ) attn_output = ( attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim) ) attn_output = linear(attn_output, out_proj_weight, out_proj_bias) attn_output = attn_output.view(-1, 1, attn_output.size(1)) return attn_output