# modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/model/t2s_model.py import torch from tqdm import tqdm from AR.modules.embedding_onnx import SinePositionalEmbedding from AR.modules.embedding_onnx import TokenEmbedding from AR.modules.transformer_onnx import LayerNorm from AR.modules.transformer_onnx import TransformerEncoder from AR.modules.transformer_onnx import TransformerEncoderLayer from torch import nn from torch.nn import functional as F from torchmetrics.classification import MulticlassAccuracy default_config = { "embedding_dim": 512, "hidden_dim": 512, "num_head": 8, "num_layers": 12, "num_codebook": 8, "p_dropout": 0.0, "vocab_size": 1024 + 1, "phoneme_vocab_size": 512, "EOS": 1024, } inf_tensor_value = torch.FloatTensor([-float("Inf")]).float() def logits_to_probs( logits, previous_tokens = None, temperature: float = 1.0, top_k = None, top_p = None, repetition_penalty: float = 1.0, ): previous_tokens = previous_tokens.squeeze() if previous_tokens is not None and repetition_penalty != 1.0: previous_tokens = previous_tokens.long() score = torch.gather(logits, dim=0, index=previous_tokens) score = torch.where( score < 0, score * repetition_penalty, score / repetition_penalty ) logits.scatter_(dim=0, index=previous_tokens, src=score) if top_p is not None and top_p < 1.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cum_probs = torch.cumsum( torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1 ) sorted_indices_to_remove = cum_probs > top_p sorted_indices_to_remove[0] = False # keep at least one option indices_to_remove = sorted_indices_to_remove.scatter( dim=0, index=sorted_indices, src=sorted_indices_to_remove ) logits = logits.masked_fill(indices_to_remove, -float("Inf")) logits = logits / max(temperature, 1e-5) if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) pivot = v.select(-1, -1).unsqueeze(-1) logits = torch.where(logits < pivot, inf_tensor_value, logits) probs = torch.nn.functional.softmax(logits, dim=-1) return probs def multinomial_sample_one_no_sync( probs_sort ): # Does multinomial sampling without a cuda synchronization q = torch.randn_like(probs_sort) return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int) def sample( logits, previous_tokens, **sampling_kwargs, ): probs = logits_to_probs( logits=logits, previous_tokens=previous_tokens, **sampling_kwargs ) idx_next = multinomial_sample_one_no_sync(probs) return idx_next, probs class OnnxEncoder(nn.Module): def __init__(self, ar_text_embedding, bert_proj, ar_text_position): super().__init__() self.ar_text_embedding = ar_text_embedding self.bert_proj = bert_proj self.ar_text_position = ar_text_position def forward(self, x, bert_feature): x = self.ar_text_embedding(x) x = x + self.bert_proj(bert_feature.transpose(1, 2)) return self.ar_text_position(x) class T2SFirstStageDecoder(nn.Module): def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric, top_k, early_stop_num, num_layers): super().__init__() self.ar_audio_embedding = ar_audio_embedding self.ar_audio_position = ar_audio_position self.h = h self.ar_predict_layer = ar_predict_layer self.loss_fct = loss_fct self.ar_accuracy_metric = ar_accuracy_metric self.top_k = top_k self.early_stop_num = early_stop_num self.num_layers = num_layers def forward(self, x, prompt): y = prompt x_example = x[:,:,0] * 0.0 #N, 1, 512 cache = { "all_stage": self.num_layers, "k": None, "v": None, "y_emb": None, "first_infer": 1, "stage": 0, } y_emb = self.ar_audio_embedding(y) cache["y_emb"] = y_emb y_pos = self.ar_audio_position(y_emb) xy_pos = torch.concat([x, y_pos], dim=1) y_example = y_pos[:,:,0] * 0.0 x_attn_mask = torch.matmul(x_example.transpose(0, 1) , x_example).bool() y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64) y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum( torch.ones_like(y_example.transpose(0, 1), dtype=torch.int64), dim=0 ) y_attn_mask = y_attn_mask > 0 x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool() y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool() x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1) y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) cache["k"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\ .unsqueeze(1).repeat(self.num_layers, 1, 1, 1) cache["v"] = torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))\ .unsqueeze(1).repeat(self.num_layers, 1, 1, 1) xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) logits = self.ar_predict_layer(xy_dec[:, -1]) samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) y = torch.concat([y, samples], dim=1) return y, cache["k"], cache["v"], cache["y_emb"], x_example class T2SStageDecoder(nn.Module): def __init__(self, ar_audio_embedding, ar_audio_position, h, ar_predict_layer, loss_fct, ar_accuracy_metric, top_k, early_stop_num, num_layers): super().__init__() self.ar_audio_embedding = ar_audio_embedding self.ar_audio_position = ar_audio_position self.h = h self.ar_predict_layer = ar_predict_layer self.loss_fct = loss_fct self.ar_accuracy_metric = ar_accuracy_metric self.top_k = top_k self.early_stop_num = early_stop_num self.num_layers = num_layers def forward(self, y, k, v, y_emb, x_example): cache = { "all_stage": self.num_layers, "k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)), "v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)), "y_emb": y_emb, "first_infer": 0, "stage": 0, } y_emb = torch.cat( [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 ) cache["y_emb"] = y_emb y_pos = self.ar_audio_position(y_emb) xy_pos = y_pos[:, -1:] y_example = y_pos[:,:,0] * 0.0 xy_attn_mask = torch.cat([x_example, y_example], dim=1) xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool) xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) logits = self.ar_predict_layer(xy_dec[:, -1]) samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) y = torch.concat([y, samples], dim=1) return y, cache["k"], cache["v"], cache["y_emb"], logits, samples class Text2SemanticDecoder(nn.Module): def __init__(self, config, norm_first=False, top_k=3): super(Text2SemanticDecoder, self).__init__() self.model_dim = config["model"]["hidden_dim"] self.embedding_dim = config["model"]["embedding_dim"] self.num_head = config["model"]["head"] self.num_layers = config["model"]["n_layer"] self.norm_first = norm_first self.vocab_size = config["model"]["vocab_size"] self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"] self.p_dropout = float(config["model"]["dropout"]) self.EOS = config["model"]["EOS"] self.norm_first = norm_first assert self.EOS == self.vocab_size - 1 self.bert_proj = nn.Linear(1024, self.embedding_dim) self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout) self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True) self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout) self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True) self.h = TransformerEncoder( TransformerEncoderLayer( d_model=self.model_dim, nhead=self.num_head, dim_feedforward=self.model_dim * 4, dropout=0.1, batch_first=True, norm_first=norm_first, ), num_layers=self.num_layers, norm=LayerNorm(self.model_dim) if norm_first else None, ) self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False) self.loss_fct = nn.CrossEntropyLoss(reduction="sum") self.ar_accuracy_metric = MulticlassAccuracy( self.vocab_size, top_k=top_k, average="micro", multidim_average="global", ignore_index=self.EOS, ) self.top_k = torch.LongTensor([1]) self.early_stop_num = torch.LongTensor([-1]) def init_onnx(self): self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position) self.first_stage_decoder = T2SFirstStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num, self.num_layers) self.stage_decoder = T2SStageDecoder(self.ar_audio_embedding, self.ar_audio_position, self.h, self.ar_predict_layer, self.loss_fct, self.ar_accuracy_metric, self.top_k, self.early_stop_num, self.num_layers) def forward(self, x, prompts, bert_feature): early_stop_num = self.early_stop_num prefix_len = prompts.shape[1] x = self.onnx_encoder(x, bert_feature) y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts) stop = False for idx in range(1, 1500): enco = self.stage_decoder(y, k, v, y_emb, stage, x_example) y, k, v, y_emb, stage, logits, samples = enco if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: stop = True if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: stop = True if stop: break y[0, -1] = 0 return y, idx def infer(self, x, prompts, bert_feature): top_k = self.top_k early_stop_num = self.early_stop_num x = self.onnx_encoder(x, bert_feature) y = prompts prefix_len = y.shape[1] x_len = x.shape[1] x_example = x[:,:,0] * 0.0 x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example) x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool) stop = False cache = { "all_stage": self.num_layers, "k": [None] * self.num_layers, "v": [None] * self.num_layers, "y_emb": None, "first_infer": 1, "stage": 0, } for idx in range(1500): if cache["first_infer"] == 1: y_emb = self.ar_audio_embedding(y) else: y_emb = torch.cat( [cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1 ) cache["y_emb"] = y_emb y_pos = self.ar_audio_position(y_emb) if cache["first_infer"] == 1: xy_pos = torch.concat([x, y_pos], dim=1) else: xy_pos = y_pos[:, -1:] y_len = y_pos.shape[1] if cache["first_infer"] == 1: x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True) y_attn_mask = F.pad( torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1), (x_len, 0), value=False ) xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0) else: xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool) xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache) logits = self.ar_predict_layer(xy_dec[:, -1]) samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0) if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num: stop = True if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS: stop = True if stop: if prompts.shape[1] == y.shape[1]: y = torch.concat([y, torch.zeros_like(samples)], dim=1) break y = torch.concat([y, samples], dim=1) cache["first_infer"] = 0 return y, idx