"""Loader that loads image files.""" from typing import List from langchain.document_loaders.unstructured import UnstructuredFileLoader from paddleocr import PaddleOCR import os import nltk class UnstructuredPaddleImageLoader(UnstructuredFileLoader): """Loader that uses unstructured to load image files, such as PNGs and JPGs.""" def _get_elements(self) -> List: def image_ocr_txt(filepath, dir_path="tmp_files"): full_dir_path = os.path.join(os.path.dirname(filepath), dir_path) if not os.path.exists(full_dir_path): os.makedirs(full_dir_path) filename = os.path.split(filepath)[-1] ocr = PaddleOCR(use_angle_cls=True, lang="ch", use_gpu=False, show_log=False) result = ocr.ocr(img=filepath) ocr_result = [i[1][0] for line in result for i in line] txt_file_path = os.path.join(full_dir_path, "%s.txt" % (filename)) with open(txt_file_path, 'w', encoding='utf-8') as fout: fout.write("\n".join(ocr_result)) return txt_file_path txt_file_path = image_ocr_txt(self.file_path) from unstructured.partition.text import partition_text return partition_text(filename=txt_file_path, **self.unstructured_kwargs) if __name__ == "__main__": import sys sys.path.append(os.path.dirname(os.path.dirname(__file__))) from configs.model_config import NLTK_DATA_PATH nltk.data.path = [NLTK_DATA_PATH] + nltk.data.path filepath = os.path.join(os.path.dirname(os.path.dirname(__file__)), "knowledge_base", "samples", "content", "test.jpg") loader = UnstructuredPaddleImageLoader(filepath, mode="elements") docs = loader.load() for doc in docs: print(doc)