import gradio as gr from gradio_client import Client from huggingface_hub import InferenceClient import random ss_client = Client("https://xilixmeaty40-html-image-current-tabx.hf.space/") with open("models.txt", "r") as file: models = file.read().splitlines() combined_model = "\n\n".join(models) try: client = InferenceClient(combined_model) except Exception as e: raise Exception(f"Failed to load models: {e}") def load_models(inp): return gr.update(label=models[inp]) def format_prompt(message, history, cust_p): prompt = "" if history: for user_prompt, bot_response in history: prompt += f"user{user_prompt}" prompt += f"model{bot_response}" prompt += cust_p.replace("USER_INPUT", message) return prompt def chat_inf(system_prompt, prompt, history, memory, seed, temp, tokens, top_p, rep_p, chat_mem, cust_p): hist_len = 0 if not history: history = [] if not memory: memory = [] if memory: for ea in memory[0 - chat_mem:]: hist_len += len(str(ea)) in_len = len(system_prompt + prompt) + hist_len if (in_len + tokens) > 8000: history.append((prompt, "Wait, that's too many tokens, please reduce the 'Chat Memory' value, or reduce the 'Max new tokens' value")) yield history, memory else: generate_kwargs = dict( temperature=temp, max_new_tokens=tokens, top_p=top_p, repetition_penalty=rep_p, do_sample=True, seed=seed, ) if system_prompt: formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", memory[0 - chat_mem:], cust_p) else: formatted_prompt = format_prompt(prompt, memory[0 - chat_mem:], cust_p) try: stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True, timeout=10) output = "" for response in stream: output += response.token.text yield [(prompt, output)], memory history.append((prompt, output)) memory.append((prompt, output)) yield history, memory except Exception as e: print(f"Error during model inference: {e}") yield [("Error", "The model failed to respond, possibly due to a timeout. Please try again.")], memory def get_screenshot(chat, height=5000, width=600, chatblock=[], theme="light", wait=3000, header=True): tog = 0 if chatblock: tog = 3 result = ss_client.predict(str(chat), height, width, chatblock, header, theme, wait, api_name="/run_script") out = f'https://xilixmeaty40-html-image-current-tabx.hf.space/file={result[tog]}' return out def clear_fn(): return None, None, None, None rand_val = random.randint(1, 1111111111111111) def check_rand(inp, val): if inp: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1, 1111111111111111)) else: return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val)) with gr.Blocks() as app: memory = gr.State() chat_b = gr.Chatbot(height=500) with gr.Group(): with gr.Row(): with gr.Column(scale=3): inp = gr.Textbox(label="Prompt") sys_inp = gr.Textbox(label="System Prompt (optional)") custom_prompt = gr.Textbox(label="Modify Prompt Format", lines=3, value="userUSER_INPUTmodel") with gr.Row(): with gr.Column(scale=2): btn = gr.Button("Chat") with gr.Column(scale=1): stop_btn = gr.Button("Stop") clear_btn = gr.Button("Clear") seed = gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, step=1, value=rand_val) tokens = gr.Slider(label="Max new tokens", value=300000, minimum=0, maximum=800000, step=64) temp = gr.Slider(label="Temperature", step=0.01, minimum=0.01, maximum=1.0, value=0.49) top_p = gr.Slider(label="Top-P", step=0.01, minimum=0.01, maximum=1.0, value=0.49) rep_p = gr.Slider(label="Repetition Penalty", step=0.01, minimum=0.1, maximum=2.0, value=0.99) chat_mem = gr.Number(label="Chat Memory", value=4) with gr.Accordion(label="Screenshot", open=False): im_btn = gr.Button("Screenshot") img = gr.Image(type='filepath') im_height = gr.Number(label="Height", value=5000) im_width = gr.Number(label="Width", value=500) wait_time = gr.Number(label="Wait Time", value=3000) theme = gr.Radio(label="Theme", choices=["light", "dark"], value="light") chatblock = gr.Dropdown(label="Chatblocks", choices=list(range(0, 21)), value=0, type="index") header = gr.Checkbox(label="Include header?", value=True) check_rand(rand_val, rand_val) btn.click(chat_inf, inputs=[sys_inp, inp, chat_b, memory, seed, temp, tokens, top_p, rep_p, chat_mem, custom_prompt], outputs=[chat_b, memory]) stop_btn.click(lambda: None, []) clear_btn.click(clear_fn, []) app.launch(share=True)