|
import argparse |
|
import os |
|
import numpy as np |
|
import torch |
|
from PIL import Image, ImageDraw, ImageFont |
|
|
|
|
|
import groundingdino.datasets.transforms as T |
|
from groundingdino.models import build_model |
|
from groundingdino.util import box_ops |
|
from groundingdino.util.slconfig import SLConfig |
|
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap |
|
from groundingdino.util.vl_utils import create_positive_map_from_span |
|
|
|
|
|
def plot_boxes_to_image(image_pil, tgt): |
|
H, W = tgt["size"] |
|
boxes = tgt["boxes"] |
|
labels = tgt["labels"] |
|
assert len(boxes) == len(labels), "boxes and labels must have same length" |
|
|
|
draw = ImageDraw.Draw(image_pil) |
|
mask = Image.new("L", image_pil.size, 0) |
|
mask_draw = ImageDraw.Draw(mask) |
|
|
|
|
|
for box, label in zip(boxes, labels): |
|
|
|
box = box * torch.Tensor([W, H, W, H]) |
|
|
|
box[:2] -= box[2:] / 2 |
|
box[2:] += box[:2] |
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist()) |
|
|
|
x0, y0, x1, y1 = box |
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1) |
|
|
|
draw.rectangle([x0, y0, x1, y1], outline=color, width=6) |
|
|
|
|
|
font = ImageFont.load_default() |
|
if hasattr(font, "getbbox"): |
|
bbox = draw.textbbox((x0, y0), str(label), font) |
|
else: |
|
w, h = draw.textsize(str(label), font) |
|
bbox = (x0, y0, w + x0, y0 + h) |
|
|
|
draw.rectangle(bbox, fill=color) |
|
draw.text((x0, y0), str(label), fill="white") |
|
|
|
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6) |
|
|
|
return image_pil, mask |
|
|
|
|
|
def load_image(image_path): |
|
|
|
image_pil = Image.open(image_path).convert("RGB") |
|
|
|
transform = T.Compose( |
|
[ |
|
T.RandomResize([800], max_size=1333), |
|
T.ToTensor(), |
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
] |
|
) |
|
image, _ = transform(image_pil, None) |
|
return image_pil, image |
|
|
|
|
|
def load_model(model_config_path, model_checkpoint_path, cpu_only=False): |
|
args = SLConfig.fromfile(model_config_path) |
|
args.device = "cuda" if not cpu_only else "cpu" |
|
model = build_model(args) |
|
checkpoint = torch.load(model_checkpoint_path, map_location="cpu") |
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False) |
|
print(load_res) |
|
_ = model.eval() |
|
return model |
|
|
|
|
|
def get_grounding_output(model, image, caption, box_threshold, text_threshold=None, with_logits=True, cpu_only=False, token_spans=None): |
|
assert text_threshold is not None or token_spans is not None, "text_threshould and token_spans should not be None at the same time!" |
|
caption = caption.lower() |
|
caption = caption.strip() |
|
if not caption.endswith("."): |
|
caption = caption + "." |
|
device = "cuda" if not cpu_only else "cpu" |
|
model = model.to(device) |
|
image = image.to(device) |
|
with torch.no_grad(): |
|
outputs = model(image[None], captions=[caption]) |
|
logits = outputs["pred_logits"].sigmoid()[0] |
|
boxes = outputs["pred_boxes"][0] |
|
|
|
|
|
if token_spans is None: |
|
logits_filt = logits.cpu().clone() |
|
boxes_filt = boxes.cpu().clone() |
|
filt_mask = logits_filt.max(dim=1)[0] > box_threshold |
|
logits_filt = logits_filt[filt_mask] |
|
boxes_filt = boxes_filt[filt_mask] |
|
|
|
|
|
tokenlizer = model.tokenizer |
|
tokenized = tokenlizer(caption) |
|
|
|
pred_phrases = [] |
|
for logit, box in zip(logits_filt, boxes_filt): |
|
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer) |
|
if with_logits: |
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})") |
|
else: |
|
pred_phrases.append(pred_phrase) |
|
else: |
|
|
|
positive_maps = create_positive_map_from_span( |
|
model.tokenizer(text_prompt), |
|
token_span=token_spans |
|
).to(image.device) |
|
|
|
logits_for_phrases = positive_maps @ logits.T |
|
all_logits = [] |
|
all_phrases = [] |
|
all_boxes = [] |
|
for (token_span, logit_phr) in zip(token_spans, logits_for_phrases): |
|
|
|
phrase = ' '.join([caption[_s:_e] for (_s, _e) in token_span]) |
|
|
|
filt_mask = logit_phr > box_threshold |
|
|
|
all_boxes.append(boxes[filt_mask]) |
|
|
|
all_logits.append(logit_phr[filt_mask]) |
|
if with_logits: |
|
logit_phr_num = logit_phr[filt_mask] |
|
all_phrases.extend([phrase + f"({str(logit.item())[:4]})" for logit in logit_phr_num]) |
|
else: |
|
all_phrases.extend([phrase for _ in range(len(filt_mask))]) |
|
boxes_filt = torch.cat(all_boxes, dim=0).cpu() |
|
pred_phrases = all_phrases |
|
|
|
|
|
return boxes_filt, pred_phrases |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
parser = argparse.ArgumentParser("Grounding DINO example", add_help=True) |
|
parser.add_argument("--config_file", "-c", type=str, required=True, help="path to config file") |
|
parser.add_argument( |
|
"--checkpoint_path", "-p", type=str, required=True, help="path to checkpoint file" |
|
) |
|
parser.add_argument("--image_path", "-i", type=str, required=True, help="path to image file") |
|
parser.add_argument("--text_prompt", "-t", type=str, required=True, help="text prompt") |
|
parser.add_argument( |
|
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory" |
|
) |
|
|
|
parser.add_argument("--box_threshold", type=float, default=0.3, help="box threshold") |
|
parser.add_argument("--text_threshold", type=float, default=0.25, help="text threshold") |
|
parser.add_argument("--token_spans", type=str, default=None, help= |
|
"The positions of start and end positions of phrases of interest. \ |
|
For example, a caption is 'a cat and a dog', \ |
|
if you would like to detect 'cat', the token_spans should be '[[[2, 5]], ]', since 'a cat and a dog'[2:5] is 'cat'. \ |
|
if you would like to detect 'a cat', the token_spans should be '[[[0, 1], [2, 5]], ]', since 'a cat and a dog'[0:1] is 'a', and 'a cat and a dog'[2:5] is 'cat'. \ |
|
") |
|
|
|
parser.add_argument("--cpu-only", action="store_true", help="running on cpu only!, default=False") |
|
args = parser.parse_args() |
|
|
|
|
|
config_file = args.config_file |
|
checkpoint_path = args.checkpoint_path |
|
image_path = args.image_path |
|
text_prompt = args.text_prompt |
|
output_dir = args.output_dir |
|
box_threshold = args.box_threshold |
|
text_threshold = args.text_threshold |
|
token_spans = args.token_spans |
|
|
|
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
image_pil, image = load_image(image_path) |
|
|
|
model = load_model(config_file, checkpoint_path, cpu_only=args.cpu_only) |
|
|
|
|
|
image_pil.save(os.path.join(output_dir, "raw_image.jpg")) |
|
|
|
|
|
if token_spans is not None: |
|
text_threshold = None |
|
print("Using token_spans. Set the text_threshold to None.") |
|
|
|
|
|
|
|
boxes_filt, pred_phrases = get_grounding_output( |
|
model, image, text_prompt, box_threshold, text_threshold, cpu_only=args.cpu_only, token_spans=token_spans |
|
) |
|
|
|
|
|
size = image_pil.size |
|
pred_dict = { |
|
"boxes": boxes_filt, |
|
"size": [size[1], size[0]], |
|
"labels": pred_phrases, |
|
} |
|
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0] |
|
save_path = os.path.join(output_dir, "pred.jpg") |
|
image_with_box.save(save_path) |
|
print(f"\n======================\n{save_path} saved.\nThe program runs successfully!") |
|
|