yopo / tools /benchmark.py
nikigoli's picture
Upload folder using huggingface_hub
a277bb8 verified
# ------------------------------------------------------------------------
# Copyright (c) 2023 IDEA. All Rights Reserved.
# ------------------------------------------------------------------------
# ------------------------------------------------------------------------
# Copyright (c) 2021 megvii-model. All Rights Reserved.
# ------------------------------------------------------------------------
# taken from https://gist.github.com/fmassa/c0fbb9fe7bf53b533b5cc241f5c8234c with a few modifications
# taken from detectron2 / fvcore with a few modifications
# https://github.com/facebookresearch/detectron2/blob/master/detectron2/utils/analysis.py
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
from collections import OrderedDict, Counter, defaultdict
import json
import os
from posixpath import join
import sys
sys.path.append(os.path.dirname(sys.path[0]))
import numpy as np
from numpy import prod
from itertools import zip_longest
import tqdm
import logging
import typing
import torch
import torch.nn as nn
from functools import partial
import time
from util.slconfig import SLConfig
from typing import Any, Callable, List, Optional, Union
from numbers import Number
Handle = Callable[[List[Any], List[Any]], Union[typing.Counter[str], Number]]
from main import build_model_main, get_args_parser as get_main_args_parser
from datasets import build_dataset
def get_shape(val: object) -> typing.List[int]:
"""
Get the shapes from a jit value object.
Args:
val (torch._C.Value): jit value object.
Returns:
list(int): return a list of ints.
"""
if val.isCompleteTensor(): # pyre-ignore
r = val.type().sizes() # pyre-ignore
if not r:
r = [1]
return r
elif val.type().kind() in ("IntType", "FloatType"):
return [1]
elif val.type().kind() in ("StringType",):
return [0]
elif val.type().kind() in ("ListType",):
return [1]
elif val.type().kind() in ("BoolType", "NoneType"):
return [0]
else:
raise ValueError()
def addmm_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for fully connected layers with torch script.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs[1:3]]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 2
assert len(input_shapes[1]) == 2
batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][1]
flop = batch_size * input_dim * output_dim
flop_counter = Counter({"addmm": flop})
return flop_counter
def bmm_flop_jit(inputs, outputs):
# Count flop for nn.Linear
# inputs is a list of length 3.
input_shapes = [get_shape(v) for v in inputs]
# input_shapes[0]: [batch size, input feature dimension]
# input_shapes[1]: [batch size, output feature dimension]
assert len(input_shapes[0]) == 3
assert len(input_shapes[1]) == 3
T, batch_size, input_dim = input_shapes[0]
output_dim = input_shapes[1][2]
flop = T * batch_size * input_dim * output_dim
flop_counter = Counter({"bmm": flop})
return flop_counter
def basic_binary_op_flop_jit(inputs, outputs, name):
input_shapes = [get_shape(v) for v in inputs]
# for broadcasting
input_shapes = [s[::-1] for s in input_shapes]
max_shape = np.array(list(zip_longest(*input_shapes, fillvalue=1))).max(1)
flop = prod(max_shape)
flop_counter = Counter({name: flop})
return flop_counter
def rsqrt_flop_jit(inputs, outputs):
input_shapes = [get_shape(v) for v in inputs]
flop = prod(input_shapes[0]) * 2
flop_counter = Counter({"rsqrt": flop})
return flop_counter
def dropout_flop_jit(inputs, outputs):
input_shapes = [get_shape(v) for v in inputs[:1]]
flop = prod(input_shapes[0])
flop_counter = Counter({"dropout": flop})
return flop_counter
def softmax_flop_jit(inputs, outputs):
# from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/profiler/internal/flops_registry.py
input_shapes = [get_shape(v) for v in inputs[:1]]
flop = prod(input_shapes[0]) * 5
flop_counter = Counter({"softmax": flop})
return flop_counter
def _reduction_op_flop_jit(inputs, outputs, reduce_flops=1, finalize_flops=0):
input_shapes = [get_shape(v) for v in inputs]
output_shapes = [get_shape(v) for v in outputs]
in_elements = prod(input_shapes[0])
out_elements = prod(output_shapes[0])
num_flops = in_elements * reduce_flops + out_elements * (
finalize_flops - reduce_flops
)
return num_flops
def conv_flop_count(
x_shape: typing.List[int],
w_shape: typing.List[int],
out_shape: typing.List[int],
) -> typing.Counter[str]:
"""
This method counts the flops for convolution. Note only multiplication is
counted. Computation for addition and bias is ignored.
Args:
x_shape (list(int)): The input shape before convolution.
w_shape (list(int)): The filter shape.
out_shape (list(int)): The output shape after convolution.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
batch_size, Cin_dim, Cout_dim = x_shape[0], w_shape[1], out_shape[1]
out_size = prod(out_shape[2:])
kernel_size = prod(w_shape[2:])
flop = batch_size * out_size * Cout_dim * Cin_dim * kernel_size
flop_counter = Counter({"conv": flop})
return flop_counter
def conv_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for convolution using torch script.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before convolution.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after convolution.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs of Convolution should be a list of length 12. They represent:
# 0) input tensor, 1) convolution filter, 2) bias, 3) stride, 4) padding,
# 5) dilation, 6) transposed, 7) out_pad, 8) groups, 9) benchmark_cudnn,
# 10) deterministic_cudnn and 11) user_enabled_cudnn.
# import ipdb; ipdb.set_trace()
# assert len(inputs) == 12
x, w = inputs[:2]
x_shape, w_shape, out_shape = (
get_shape(x),
get_shape(w),
get_shape(outputs[0]),
)
return conv_flop_count(x_shape, w_shape, out_shape)
def einsum_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for the einsum operation. We currently support
two einsum operations: "nct,ncp->ntp" and "ntg,ncg->nct".
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before einsum.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after einsum.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs of einsum should be a list of length 2.
# Inputs[0] stores the equation used for einsum.
# Inputs[1] stores the list of input shapes.
assert len(inputs) == 2
equation = inputs[0].toIValue() # pyre-ignore
# Get rid of white space in the equation string.
equation = equation.replace(" ", "")
# Re-map equation so that same equation with different alphabet
# representations will look the same.
letter_order = OrderedDict((k, 0) for k in equation if k.isalpha()).keys()
mapping = {ord(x): 97 + i for i, x in enumerate(letter_order)}
equation = equation.translate(mapping)
input_shapes_jit = inputs[1].node().inputs() # pyre-ignore
input_shapes = [get_shape(v) for v in input_shapes_jit]
if equation == "abc,abd->acd":
n, c, t = input_shapes[0]
p = input_shapes[-1][-1]
flop = n * c * t * p
flop_counter = Counter({"einsum": flop})
return flop_counter
elif equation == "abc,adc->adb":
n, t, g = input_shapes[0]
c = input_shapes[-1][1]
flop = n * t * g * c
flop_counter = Counter({"einsum": flop})
return flop_counter
else:
raise NotImplementedError("Unsupported einsum operation.")
def matmul_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for matmul.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before matmul.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after matmul.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs contains the shapes of two matrices.
input_shapes = [get_shape(v) for v in inputs]
assert len(input_shapes) == 2
assert input_shapes[0][-1] == input_shapes[1][-2]
dim_len = len(input_shapes[1])
assert dim_len >= 2
batch = 1
for i in range(dim_len - 2):
assert input_shapes[0][i] == input_shapes[1][i]
batch *= input_shapes[0][i]
# (b,m,c) x (b,c,n), flop = bmnc
flop = batch * input_shapes[0][-2] * input_shapes[0][-1] * input_shapes[1][-1]
flop_counter = Counter({"matmul": flop})
return flop_counter
def batchnorm_flop_jit(
inputs: typing.List[object], outputs: typing.List[object]
) -> typing.Counter[str]:
"""
This method counts the flops for batch norm.
Args:
inputs (list(torch._C.Value)): The input shape in the form of a list of
jit object before batch norm.
outputs (list(torch._C.Value)): The output shape in the form of a list
of jit object after batch norm.
Returns:
Counter: A Counter dictionary that records the number of flops for each
operation.
"""
# Inputs[0] contains the shape of the input.
input_shape = get_shape(inputs[0])
assert 2 <= len(input_shape) <= 5
flop = prod(input_shape) * 4
flop_counter = Counter({"batchnorm": flop})
return flop_counter
def linear_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for the aten::linear operator.
"""
# Inputs is a list of length 3; unlike aten::addmm, it is the first
# two elements that are relevant.
input_shapes = [get_shape(v) for v in inputs[0:2]]
# input_shapes[0]: [dim0, dim1, ..., input_feature_dim]
# input_shapes[1]: [output_feature_dim, input_feature_dim]
assert input_shapes[0][-1] == input_shapes[1][-1]
flops = prod(input_shapes[0]) * input_shapes[1][0]
flop_counter = Counter({"linear": flops})
return flop_counter
def norm_flop_counter(affine_arg_index: int) -> Handle:
"""
Args:
affine_arg_index: index of the affine argument in inputs
"""
def norm_flop_jit(inputs: List[Any], outputs: List[Any]) -> Number:
"""
Count flops for norm layers.
"""
# Inputs[0] contains the shape of the input.
input_shape = get_shape(inputs[0])
has_affine = get_shape(inputs[affine_arg_index]) is not None
assert 2 <= len(input_shape) <= 5, input_shape
# 5 is just a rough estimate
flop = prod(input_shape) * (5 if has_affine else 4)
flop_counter = Counter({"norm": flop})
return flop_counter
return norm_flop_jit
def elementwise_flop_counter(input_scale: float = 1, output_scale: float = 0) -> Handle:
"""
Count flops by
input_tensor.numel() * input_scale + output_tensor.numel() * output_scale
Args:
input_scale: scale of the input tensor (first argument)
output_scale: scale of the output tensor (first element in outputs)
"""
def elementwise_flop(inputs: List[Any], outputs: List[Any]) -> Number:
ret = 0
if input_scale != 0:
shape = get_shape(inputs[0])
ret += input_scale * prod(shape)
if output_scale != 0:
shape = get_shape(outputs[0])
ret += output_scale * prod(shape)
flop_counter = Counter({"elementwise": ret})
return flop_counter
return elementwise_flop
# A dictionary that maps supported operations to their flop count jit handles.
_SUPPORTED_OPS: typing.Dict[str, typing.Callable] = {
"aten::addmm": addmm_flop_jit,
"aten::_convolution": conv_flop_jit,
"aten::einsum": einsum_flop_jit,
"aten::matmul": matmul_flop_jit,
"aten::batch_norm": batchnorm_flop_jit,
"aten::bmm": bmm_flop_jit,
"aten::add": partial(basic_binary_op_flop_jit, name="aten::add"),
"aten::add_": partial(basic_binary_op_flop_jit, name="aten::add_"),
"aten::mul": partial(basic_binary_op_flop_jit, name="aten::mul"),
"aten::sub": partial(basic_binary_op_flop_jit, name="aten::sub"),
"aten::div": partial(basic_binary_op_flop_jit, name="aten::div"),
"aten::floor_divide": partial(basic_binary_op_flop_jit, name="aten::floor_divide"),
"aten::relu": partial(basic_binary_op_flop_jit, name="aten::relu"),
"aten::relu_": partial(basic_binary_op_flop_jit, name="aten::relu_"),
"aten::sigmoid": partial(basic_binary_op_flop_jit, name="aten::sigmoid"),
"aten::log": partial(basic_binary_op_flop_jit, name="aten::log"),
"aten::sum": partial(basic_binary_op_flop_jit, name="aten::sum"),
"aten::sin": partial(basic_binary_op_flop_jit, name="aten::sin"),
"aten::cos": partial(basic_binary_op_flop_jit, name="aten::cos"),
"aten::pow": partial(basic_binary_op_flop_jit, name="aten::pow"),
"aten::cumsum": partial(basic_binary_op_flop_jit, name="aten::cumsum"),
"aten::rsqrt": rsqrt_flop_jit,
"aten::softmax": softmax_flop_jit,
"aten::dropout": dropout_flop_jit,
"aten::linear": linear_flop_jit,
"aten::group_norm": norm_flop_counter(2),
"aten::layer_norm": norm_flop_counter(2),
"aten::instance_norm": norm_flop_counter(1),
"aten::upsample_nearest2d": elementwise_flop_counter(0, 1),
"aten::upsample_bilinear2d": elementwise_flop_counter(0, 4),
"aten::adaptive_avg_pool2d": elementwise_flop_counter(1, 0),
"aten::max_pool2d": elementwise_flop_counter(1, 0),
"aten::mm": matmul_flop_jit,
}
# A list that contains ignored operations.
_IGNORED_OPS: typing.List[str] = [
"aten::Int",
"aten::__and__",
"aten::arange",
"aten::cat",
"aten::clamp",
"aten::clamp_",
"aten::contiguous",
"aten::copy_",
"aten::detach",
"aten::empty",
"aten::eq",
"aten::expand",
"aten::flatten",
"aten::floor",
"aten::full",
"aten::gt",
"aten::index",
"aten::index_put_",
"aten::max",
"aten::nonzero",
"aten::permute",
"aten::remainder",
"aten::reshape",
"aten::select",
"aten::gather",
"aten::topk",
"aten::meshgrid",
"aten::masked_fill",
"aten::linspace",
"aten::size",
"aten::slice",
"aten::split_with_sizes",
"aten::squeeze",
"aten::t",
"aten::to",
"aten::transpose",
"aten::unsqueeze",
"aten::view",
"aten::zeros",
"aten::zeros_like",
"aten::ones_like",
"aten::new_zeros",
"aten::all",
"prim::Constant",
"prim::Int",
"prim::ListConstruct",
"prim::ListUnpack",
"prim::NumToTensor",
"prim::TupleConstruct",
"aten::stack",
"aten::chunk",
"aten::repeat",
"aten::grid_sampler",
"aten::constant_pad_nd",
]
_HAS_ALREADY_SKIPPED = False
def flop_count(
model: nn.Module,
inputs: typing.Tuple[object, ...],
whitelist: typing.Union[typing.List[str], None] = None,
customized_ops: typing.Union[typing.Dict[str, typing.Callable], None] = None,
) -> typing.DefaultDict[str, float]:
"""
Given a model and an input to the model, compute the Gflops of the given
model. Note the input should have a batch size of 1.
Args:
model (nn.Module): The model to compute flop counts.
inputs (tuple): Inputs that are passed to `model` to count flops.
Inputs need to be in a tuple.
whitelist (list(str)): Whitelist of operations that will be counted. It
needs to be a subset of _SUPPORTED_OPS. By default, the function
computes flops for all supported operations.
customized_ops (dict(str,Callable)) : A dictionary contains customized
operations and their flop handles. If customized_ops contains an
operation in _SUPPORTED_OPS, then the default handle in
_SUPPORTED_OPS will be overwritten.
Returns:
defaultdict: A dictionary that records the number of gflops for each
operation.
"""
# Copy _SUPPORTED_OPS to flop_count_ops.
# If customized_ops is provided, update _SUPPORTED_OPS.
flop_count_ops = _SUPPORTED_OPS.copy()
if customized_ops:
flop_count_ops.update(customized_ops)
# If whitelist is None, count flops for all suported operations.
if whitelist is None:
whitelist_set = set(flop_count_ops.keys())
else:
whitelist_set = set(whitelist)
# Torch script does not support parallell torch models.
if isinstance(
model,
(nn.parallel.distributed.DistributedDataParallel, nn.DataParallel),
):
model = model.module # pyre-ignore
assert set(whitelist_set).issubset(
flop_count_ops
), "whitelist needs to be a subset of _SUPPORTED_OPS and customized_ops."
assert isinstance(inputs, tuple), "Inputs need to be in a tuple."
# Compatibility with torch.jit.
if hasattr(torch.jit, "get_trace_graph"):
trace, _ = torch.jit.get_trace_graph(model, inputs)
trace_nodes = trace.graph().nodes()
else:
trace, _ = torch.jit._get_trace_graph(model, inputs)
trace_nodes = trace.nodes()
skipped_ops = Counter()
total_flop_counter = Counter()
for node in trace_nodes:
kind = node.kind()
if kind not in whitelist_set:
# If the operation is not in _IGNORED_OPS, count skipped operations.
if kind not in _IGNORED_OPS:
skipped_ops[kind] += 1
continue
handle_count = flop_count_ops.get(kind, None)
if handle_count is None:
continue
inputs, outputs = list(node.inputs()), list(node.outputs())
flops_counter = handle_count(inputs, outputs)
total_flop_counter += flops_counter
global _HAS_ALREADY_SKIPPED
if len(skipped_ops) > 0 and not _HAS_ALREADY_SKIPPED:
_HAS_ALREADY_SKIPPED = True
for op, freq in skipped_ops.items():
logging.warning("Skipped operation {} {} time(s)".format(op, freq))
# Convert flop count to gigaflops.
final_count = defaultdict(float)
for op in total_flop_counter:
final_count[op] = total_flop_counter[op] / 1e9
return final_count
def get_dataset(coco_path):
"""
Gets the COCO dataset used for computing the flops on
"""
class DummyArgs:
pass
args = DummyArgs()
args.dataset_file = "coco"
args.coco_path = coco_path
args.masks = False
dataset = build_dataset(image_set="val", args=args)
return dataset
def warmup(model, inputs, N=10):
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
def measure_time(model, inputs, N=10):
warmup(model, inputs)
s = time.time()
for i in range(N):
out = model(inputs)
torch.cuda.synchronize()
t = (time.time() - s) / N
return t
def fmt_res(data):
# return data.mean(), data.std(), data.min(), data.max()
return {
"mean": data.mean(),
"std": data.std(),
"min": data.min(),
"max": data.max(),
}
def benchmark():
_outputs = {}
main_args = get_main_args_parser().parse_args()
main_args.commad_txt = "Command: " + " ".join(sys.argv)
# load cfg file and update the args
print("Loading config file from {}".format(main_args.config_file))
cfg = SLConfig.fromfile(main_args.config_file)
if main_args.options is not None:
cfg.merge_from_dict(main_args.options)
cfg_dict = cfg._cfg_dict.to_dict()
args_vars = vars(main_args)
for k, v in cfg_dict.items():
if k not in args_vars:
setattr(main_args, k, v)
else:
raise ValueError("Key {} can used by args only".format(k))
dataset = build_dataset("val", main_args)
model, _, _ = build_model_main(main_args)
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
_outputs.update({"nparam": n_parameters})
model.cuda()
model.eval()
warmup_step = 5
total_step = 20
images = []
for idx in range(total_step):
img, t = dataset[idx]
images.append(img)
with torch.no_grad():
tmp = []
tmp2 = []
for imgid, img in enumerate(tqdm.tqdm(images)):
inputs = [img.to("cuda")]
res = flop_count(model, (inputs,))
t = measure_time(model, inputs)
tmp.append(sum(res.values()))
if imgid >= warmup_step:
tmp2.append(t)
_outputs.update({"detailed_flops": res})
_outputs.update({"flops": fmt_res(np.array(tmp)), "time": fmt_res(np.array(tmp2))})
mean_infer_time = float(fmt_res(np.array(tmp2))["mean"])
_outputs.update({"fps": 1 / mean_infer_time})
res = {"flops": fmt_res(np.array(tmp)), "time": fmt_res(np.array(tmp2))}
# print(res)
output_file = os.path.join(main_args.output_dir, "flops", "log.txt")
os.makedirs(os.path.dirname(output_file), exist_ok=True)
with open(output_file, "a") as f:
f.write(main_args.commad_txt + "\n")
f.write(json.dumps(_outputs, indent=2) + "\n")
return _outputs
if __name__ == "__main__":
res = benchmark()
print(json.dumps(res, indent=2))