from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, AutoConfig, AutoModelForSequenceClassification, TrainingArguments from shared import CustomTokens, GeneralArguments from dataclasses import dataclass, field from typing import Optional, Union import torch import classify import base64 import re import requests import json import logging logging.basicConfig() logger = logging.getLogger(__name__) # Public innertube key (b64 encoded so that it is not incorrectly flagged) INNERTUBE_KEY = base64.b64decode( b'QUl6YVN5QU9fRkoyU2xxVThRNFNURUhMR0NpbHdfWTlfMTFxY1c4').decode() YT_CONTEXT = { 'client': { 'userAgent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.110 Safari/537.36,gzip(gfe)', 'clientName': 'WEB', 'clientVersion': '2.20211221.00.00', } } _YT_INITIAL_DATA_RE = r'(?:window\s*\[\s*["\']ytInitialData["\']\s*\]|ytInitialData)\s*=\s*({.+?})\s*;\s*(?:var\s+meta|</script|\n)' def get_all_channel_vids(channel_id): continuation = None while True: if continuation is None: params = {'list': channel_id.replace('UC', 'UU', 1)} response = requests.get( 'https://www.youtube.com/playlist', params=params) items = json.loads(re.search(_YT_INITIAL_DATA_RE, response.text).group(1))['contents']['twoColumnBrowseResultsRenderer']['tabs'][0]['tabRenderer']['content'][ 'sectionListRenderer']['contents'][0]['itemSectionRenderer']['contents'][0]['playlistVideoListRenderer']['contents'] else: params = {'key': INNERTUBE_KEY} data = { 'context': YT_CONTEXT, 'continuation': continuation } response = requests.post( 'https://www.youtube.com/youtubei/v1/browse', params=params, json=data) items = response.json()[ 'onResponseReceivedActions'][0]['appendContinuationItemsAction']['continuationItems'] new_token = None for vid in items: info = vid.get('playlistVideoRenderer') if info: yield info['videoId'] continue info = vid.get('continuationItemRenderer') if info: new_token = info['continuationEndpoint']['continuationCommand']['token'] if new_token is None: break continuation = new_token @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default=None, metadata={ 'help': 'Path to pretrained model or model identifier from huggingface.co/models' } ) cache_dir: Optional[str] = field( default='models', metadata={ 'help': 'Where to store the pretrained models downloaded from huggingface.co' }, ) use_fast_tokenizer: bool = field( default=True, metadata={ 'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.' }, ) model_revision: str = field( default='main', metadata={ 'help': 'The specific model version to use (can be a branch name, tag name or commit id).' }, ) use_auth_token: bool = field( default=False, metadata={ 'help': 'Will use the token generated when running `transformers-cli login` (necessary to use this script ' 'with private models).' }, ) import itertools from errors import InferenceException, ModelLoadError @dataclass class InferenceArguments(ModelArguments): model_name_or_path: str = field( default='Xenova/sponsorblock-small', metadata={ 'help': 'Path to pretrained model used for prediction' } ) classifier_model_name_or_path: str = field( default='EColi/SB_Classifier', metadata={ 'help': 'Use a pretrained classifier' } ) max_videos: Optional[int] = field( default=None, metadata={ 'help': 'The number of videos to test on' } ) start_index: int = field(default=None, metadata={ 'help': 'Video to start the evaluation at.'}) channel_id: Optional[str] = field( default=None, metadata={ 'help': 'Used to evaluate a channel' } ) video_ids: str = field( default_factory=lambda: [], metadata={ 'nargs': '+' } ) output_as_json: bool = field(default=False, metadata={ 'help': 'Output evaluations as JSON'}) min_probability: float = field( default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'}) def __post_init__(self): self.video_ids = list(map(str.strip, self.video_ids)) if any(len(video_id) != 11 for video_id in self.video_ids): raise InferenceException('Invalid video IDs (length not 11)') if self.channel_id is not None: start = self.start_index or 0 end = None if self.max_videos is None else start + self.max_videos channel_video_ids = list(itertools.islice(get_all_channel_vids( self.channel_id), start, end)) logger.info( f'Found {len(channel_video_ids)} for channel {self.channel_id}') self.video_ids += channel_video_ids def get_model_tokenizer_classifier(inference_args: InferenceArguments, general_args: GeneralArguments): original_path = inference_args.model_name_or_path # Load main model and tokenizer model, tokenizer = get_model_tokenizer(inference_args, general_args) # Load classifier inference_args.model_name_or_path = inference_args.classifier_model_name_or_path classifier_model, classifier_tokenizer = get_model_tokenizer( inference_args, general_args, model_type='classifier') classifier = classify.SponsorBlockClassificationPipeline( classifier_model, classifier_tokenizer) # Reset to original model_name_or_path inference_args.model_name_or_path = original_path return model, tokenizer, classifier def get_model_tokenizer(model_args: ModelArguments, general_args: Union[GeneralArguments, TrainingArguments] = None, config_args=None, model_type='seq2seq'): if model_args.model_name_or_path is None: raise ModelLoadError('Must specify --model_name_or_path') if config_args is None: config_args = {} use_auth_token = True if model_args.use_auth_token else None config = AutoConfig.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=use_auth_token, **config_args ) tokenizer = AutoTokenizer.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=use_auth_token, ) model_type = AutoModelForSeq2SeqLM if model_type == 'seq2seq' else AutoModelForSequenceClassification model = model_type.from_pretrained( model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=use_auth_token, ) # Add custom tokens CustomTokens.add_custom_tokens(tokenizer) model.resize_token_embeddings(len(tokenizer)) # Potentially move model to gpu if general_args is not None and not general_args.no_cuda: model.to('cuda' if torch.cuda.is_available() else 'cpu') return model, tokenizer