Spaces:
Running
Running
File size: 28,340 Bytes
90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c 90d1f68 5fbdd3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
from datetime import datetime
import itertools
from typing import Optional, List
from datasets import load_dataset
from model import ModelArguments
import segment
from tqdm import tqdm
from dataclasses import dataclass, field
from transformers import HfArgumentParser
from shared import GeneralArguments, CustomTokens
import csv
import re
import random
import logging
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api._errors import CouldNotRetrieveTranscript, YouTubeRequestFailed
import os
import json
import time
import requests
from utils import InterruptibleThreadPool, Job
def find(s, ch):
return [i for i, ltr in enumerate(s) if ltr == ch]
def wordify(transcript, maximum_wps=1):
"""Try to replicate format for automatically generated transcripts"""
# Do not allow segments to be on screen for too long using maximum_wps
words = []
for line_index, line in enumerate(transcript):
text = line['text'].replace('\n', ' ').strip()
if not text:
continue
start = line['start']
next_start = transcript[line_index + 1]['start'] \
if line_index < len(transcript) - 1 else float('inf')
# Use maximum wps to calculate latest end (to avoid segments which stay on screen too long)
longest_duration = maximum_wps * text.count(' ')
latest_end = start + longest_duration
end = min(start + line['duration'], next_start, latest_end)
duration = end - start
indices = find(text, ' ') + [len(text)]
start_index = 0
for i in range(len(indices)):
word = text[start_index:indices[i]].strip()
if not word:
continue # Skip empty words (e.g., \n)
percentage = start_index/indices[-1]
w_duration = len(word)/indices[-1] * duration
w_start = start + percentage * duration
words.append({
'start': round(w_start, 3),
'duration': round(w_duration, 3),
'end': round(w_start + w_duration, 3),
'text': word,
})
start_index = indices[i] + 1
return words
def get_manual_words(transcript_list):
transcript = transcript_list.find_manually_created_transcript(
['en-GB', 'en-US', 'en']).fetch()
return wordify(transcript)
PROFANITY_RAW = '[ __ ]' # How YouTube transcribes profanity
PROFANITY_CONVERTED = '*****' # Safer version for tokenizing
def get_auto_words(transcript_list):
words = []
transcript = transcript_list.find_generated_transcript(['en'])
url = transcript._url + '&fmt=json3'
info = transcript._http_client.get(url)
for event in info.json()['events']:
start_ms = event.get('tStartMs', 0)
for word in event.get('segs') or []:
offset_ms = word.get('tOffsetMs', 0)
texts = word['utf8'].replace(
PROFANITY_RAW, PROFANITY_CONVERTED
).strip().split()
for text in texts:
words.append({
'start': (start_ms + offset_ms)/1000,
'text': text
})
return words
def get_words(video_id, process=True, fallback=True, transcript_type='auto'):
"""Get parsed video transcript with caching system
returns None if not processed yet and process is False
"""
get_manual_if_fail = fallback and transcript_type == 'auto'
transcript_path = os.path.join(
'transcripts', transcript_type, f'{video_id}.json')
words = []
try:
if os.path.exists(transcript_path):
with open(transcript_path) as fp:
wds = json.load(fp)
if not wds and get_manual_if_fail:
return get_words(video_id, process, fallback, 'manual')
return wds
elif not process:
return None
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
if transcript_type == 'manual':
words = get_manual_words(transcript_list)
else:
words = get_auto_words(transcript_list)
except YouTubeRequestFailed as e:
print(e)
time.sleep(30) # Timeout
return get_words(video_id, process, fallback, transcript_type)
except CouldNotRetrieveTranscript:
if get_manual_if_fail:
print('fallback')
return get_words(video_id, process, fallback, 'manual')
except json.decoder.JSONDecodeError:
# Warning, unable to parse JSON
pass
with open(transcript_path, 'w') as fp:
json.dump(words, fp)
return words
# TODO make min_sponsor_segment_length param
def extract_sponsors(words, min_sponsor_segment_length=5):
if len(words) < min_sponsor_segment_length:
return [] # Force short phrases to not be sponsors
paragraphs = []
current = []
prev_category = None
for word in words:
if word['category'] is None: # and not current:
continue # Skip unimportant
if word['category'] == prev_category:
current.append(word['text'])
else:
paragraphs.append({
'words': current,
'category': prev_category,
})
current = []
prev_category = word['category']
if current and prev_category is not None:
paragraphs.append({
'words': current,
'category': prev_category,
})
# Remove all too short:
paragraphs = list(filter(lambda x: len(
x['words']) >= min_sponsor_segment_length, paragraphs))
return paragraphs
def clean_text(text):
# Replace impossibly long words with a special token
# Usually the result of incorrect labelling
text = re.sub(r'\w{64,}', CustomTokens.LONG_WORD.value, text)
SHORT_HYPHENATED_REGEX = r'\w{1,2}(?:-\w{1,2}){3,}(?:-?\w*)'
# Replace hyphenated URLs with special token
# For some reason, youtube sometimes transcribes urls in this form:
# 'b-a-b-b-e-l-dot-com', 'g-e-t-r-o-m-a-n-com'
# not 'e-commerce'
text = re.sub(f'{SHORT_HYPHENATED_REGEX}(?:com|org|net)',
CustomTokens.HYPHENATED_URL.value, text)
# Replace short+hyphenated text with a special token. Of the form:
# 'i-i-i-i-i-i-i-i-i-i-i-i', 'b-u-m-f-u-z-z-l-e', 'v-e-r-i-t-a-s-i-u-m', 'do-do-do-do-do'
text = re.sub(SHORT_HYPHENATED_REGEX,
CustomTokens.SHORT_HYPHENATED.value, text)
# Replace URLs with URL_TOKEN
URL_REGEX = r'(?:(?:http|https)\:\/\/)?[a-zA-Z0-9\.\/\?\:@\-_=#]+\.(?:[a-zA-Z]){2,6}(?:[a-zA-Z0-9\.\&\/\?\:@\-_=#%])*'
text = re.sub(URL_REGEX, CustomTokens.URL.value, text)
NUM_REGEX = r'(?:\d+,)*(?:\d*[.])?\d+'
# Encode specific numeric words
# Of the form: 12%, 12.34%
# Usually included in sponsorships
text = re.sub(f'{NUM_REGEX}%',
CustomTokens.NUMBER_PERCENTAGE.value, text)
# Normal numbers, should not have an effect on sponsorship
text = re.sub(NUM_REGEX, CustomTokens.NUMBER.value, text)
# Replace profanity with special token
text = text.replace(PROFANITY_RAW, CustomTokens.PROFANITY.value)
text = text.replace(PROFANITY_CONVERTED, CustomTokens.PROFANITY.value)
return text.strip()
def remove_duplicate_sponsor_segments(sponsor_segments):
"""Choose the best sponsor segment if overlapping with others"""
# Algorithm based on SponsorBlock algorithm
# Find sponsors that are overlapping
similar = []
for i in sponsor_segments:
for j in sponsor_segments:
# Since we do pairwise, we only check one direction
if (j['start'] >= i['start'] and j['start'] <= i['end']):
similar.append([i, j])
# Within each group, choose the segment with the most votes.
processed = []
best = []
for i in similar:
if i in processed:
continue
group = i
for j in similar:
if j[0] in group or j[1] in group: # If either in, append both
group.append(j[0])
group.append(j[1])
processed.append(j)
best.append(max(group, key=lambda item: (
item['votes'], item['reputation'], item['views'])))
return best
@dataclass
class PreprocessArguments:
"""
Arguments pertaining to what data we are going to preprocess.
"""
update_database: bool = field(
default=False, metadata={'help': 'Download the raw database.'}
)
do_create: bool = field(
default=False, metadata={'help': 'Merge sponsor segments into single file'}
)
min_votes: int = field(
default=0, metadata={'help': 'Minimum number of votes'})
# Downvotes will make this negative.
# 1 = At least one positive vote
min_date: str = field(
default='20/08/2021', metadata={'help': 'Only use submissions from after this date, defaults to the release of v3.0 (https://github.com/ajayyy/SponsorBlock/releases/tag/3.0)'})
categories: str = field(
default_factory=lambda: ['sponsor', 'selfpromo', 'interaction'],
metadata={
'nargs': '+',
'choices': ['intro', 'sponsor', 'interaction',
'outro', 'selfpromo', 'preview',
'poi_highlight', 'filler', 'music_offtopic'] # moreCategories
}
)
do_transcribe: bool = field(
default=False, metadata={'help': 'Get transcripts for videos'}
)
num_jobs: int = field(
default=4, metadata={'help': 'Number of transcripts to download in parallel'})
overwrite: bool = field(
default=True, metadata={'help': 'Overwrite training, testing and validation data, if present.'}
)
do_generate: bool = field(
default=False, metadata={'help': 'Generate labelled data.'}
)
do_split: bool = field(
default=False, metadata={'help': 'Generate training, testing and validation data.'}
)
percentage_positive: float = field(
default=0.5, metadata={'help': 'Ratio of positive (sponsor) segments to include in final output'})
train_split: float = field(
default=0.9, metadata={'help': 'Ratio of training data. Value between 0 and 1.'})
# TODO play around with ratios? lower test/validation split?
test_split: float = field(
default=0.05, metadata={'help': 'Ratio of testing data. Value between 0 and 1.'})
valid_split: float = field(
default=0.05, metadata={'help': 'Ratio of validation data. Value between 0 and 1.'})
skip_videos: int = field(default=None, metadata={
'help': 'Number of videos to skip. Set this to the latest video index to append to the current file'})
max_videos: int = field(default=None, metadata={
'help': 'Maximum number of videos to preprocess.'})
max_segments: int = field(default=None, metadata={
'help': 'Maximum number of segments to produce to preprocess.'})
raw_data_dir: Optional[str] = field(
default='raw',
metadata={
'help': 'Raw data directory'
},
)
raw_data_file: Optional[str] = field(
default='sponsorTimes.csv',
metadata={
'help': 'Raw data file'
},
)
min_wps: float = field(
default=0.4, metadata={'help': 'Ignore videos with not enough words spoken per second. This is usually indicitive of video whose captions aren\'t English.'})
# 0.1 ~ 1%
# 0.4 ~ 2.5%
# 0.9 ~ 5%
# Mirrors for database
MIRRORS = [
'https://sponsor.ajay.app/database/sponsorTimes.csv', # Latest
'https://sb-mirror.mchang.xyz/sponsorTimes.csv', # 5 minute delay
'https://sb.ltn.fi/database/sponsorTimes.csv', # 5 minute delay
]
# TODO only download latest (updates/changes)
def download_file(url, filename):
"""
Helper method handling downloading large files from `url` to `filename`.
Adapted from https://stackoverflow.com/a/42071418
"""
chunk_size = 1024
r = requests.get(url, stream=True)
total_bytes = int(r.headers['Content-Length'])
with open(filename, 'wb') as f, tqdm(unit='B', total=total_bytes) as progress:
for chunk in r.iter_content(chunk_size=chunk_size):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
f.write(chunk)
return total_bytes == os.path.getsize(filename)
@dataclass
class ProcessedArguments:
processed_dir: Optional[str] = field(
default='processed',
metadata={
'help': 'Processed data directory'
},
)
processed_file: Optional[str] = field(
default='final.json',
metadata={
'help': 'Processed data file'
},
)
def load_datasets(dataset_args):
print('Reading datasets')
data_files = {}
if dataset_args.train_file is not None:
data_files['train'] = os.path.join(
dataset_args.data_dir, dataset_args.train_file)
if dataset_args.validation_file is not None:
data_files['validation'] = os.path.join(
dataset_args.data_dir, dataset_args.validation_file)
if dataset_args.test_file is not None:
data_files['test'] = os.path.join(
dataset_args.data_dir, dataset_args.test_file)
return load_dataset('json', data_files=data_files)
@dataclass
class DatasetArguments:
data_dir: Optional[str] = field(
default='data',
metadata={
'help': 'The directory which stores train, test and/or validation data.'
},
)
train_file: Optional[str] = field(
default='train.json', metadata={'help': 'The input training data file (a jsonlines file).'}
)
validation_file: Optional[str] = field(
default='valid.json',
metadata={
'help': 'An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines file).'
},
)
test_file: Optional[str] = field(
default='test.json',
metadata={
'help': 'An optional input test data file to evaluate the metrics (rouge) on (a jsonlines file).'
},
)
excess_file: Optional[str] = field(
default='excess.json',
metadata={
'help': 'The excess segments left after the split'
},
)
overwrite_cache: bool = field(
default=False, metadata={'help': 'Overwrite the cached training and evaluation sets'}
)
positive_file: Optional[str] = field(
default='sponsor_segments.json', metadata={'help': 'File to output sponsored segments to (a jsonlines file).'}
)
negative_file: Optional[str] = field(
default='normal_segments.json', metadata={'help': 'File to output normal segments to (a jsonlines file).'}
)
def __post_init__(self):
# TODO check if train/validation datasets exist
if self.train_file is None and self.validation_file is None:
raise ValueError(
'Need either a dataset name or a training/validation file.')
def main():
# Responsible for getting transcrips using youtube_transcript_api,
# then labelling it according to SponsorBlock's API
logging.getLogger().setLevel(logging.INFO) # TODO make param
# Generate final.json from sponsorTimes.csv
hf_parser = HfArgumentParser((
PreprocessArguments,
ProcessedArguments,
DatasetArguments,
segment.SegmentationArguments,
ModelArguments,
GeneralArguments
))
preprocess_args, processed_args, dataset_args, segmentation_args, model_args, _ = hf_parser.parse_args_into_dataclasses()
raw_dataset_path = os.path.join(
preprocess_args.raw_data_dir, preprocess_args.raw_data_file)
def get_rows():
latest_time = datetime.strptime(preprocess_args.min_date, '%d/%m/%Y')
with open(raw_dataset_path, newline='') as csvfile:
reader = csv.DictReader(csvfile)
for line in reader:
submitted_time = datetime.fromtimestamp(
float(line['timeSubmitted'])/1e3)
if submitted_time < latest_time:
continue
if line['service'] != 'YouTube':
continue
if len(line['videoID']) != 11:
continue # Invalid youtube video ID
# TODO add support for other categories and action types?
if line['category'] not in preprocess_args.categories:
continue
if line['actionType'] != 'skip':
continue
# Ignore hidden items
if line['hidden'] == '1' or line['shadowHidden'] == '1':
continue
# Skip those that aren't highly voted
line['votes'] = int(line['votes'])
# incorrect_votes = int(line['incorrectVotes'])
if line['votes'] < preprocess_args.min_votes:
continue
yield line
if preprocess_args.update_database:
print('Updating database')
for mirror in MIRRORS:
print('Downloading from', mirror)
if download_file(mirror, raw_dataset_path):
break
print('Failed, trying next')
# 'videoID', 'startTime', 'endTime', 'votes', 'locked', 'incorrectVotes', 'UUID',
# 'userID', 'timeSubmitted', 'views', 'category', 'actionType', 'service', 'videoDuration',
# 'hidden', 'reputation', 'shadowHidden', 'hashedVideoID', 'userAgent', 'description'
data_rows = None
if preprocess_args.do_transcribe:
print('Collecting videos')
video_ids = set()
data_rows = get_rows()
for row in data_rows:
video_ids.add(row['videoID'])
# TODO first set - os.listdir and do rest
print('Start transcribing')
with tqdm(total=len(video_ids)) as progress:
def on_job_complete(job):
progress.set_description(f'Processed {job.video_id}')
progress.update()
pool = InterruptibleThreadPool(
preprocess_args.num_jobs, on_job_complete=on_job_complete)
print('Adding jobs to pool')
for video_id in video_ids:
job = Job(get_words, video_id)
job.video_id = video_id
pool.add_job(job)
print('Start processing')
pool.run()
print('Finished transcribing')
final_path = os.path.join(
processed_args.processed_dir, processed_args.processed_file)
if preprocess_args.do_create:
print('Create final data')
final_data = {}
if data_rows is None:
data_rows = get_rows()
# data_rows = itertools.islice(data_rows, 1000) # TODO temp
# TODO add progress bar
# TODO parallelise?
for index, line in enumerate(data_rows):
video_id = line['videoID']
if video_id not in final_data:
final_data[video_id] = []
segment_start = float(line['startTime'])
segment_end = float(line['endTime'])
video_words = get_words(video_id, process=False)
if not video_words:
continue
segment_words = segment.extract_segment(
video_words, segment_start, segment_end)
if len(segment_words) <= 1:
continue # Useless to add segment since no words
# duration = segment.word_end(segment_words[-1]) - segment.word_start(segment_words[0])
duration = segment_end - segment_start
wps = len(segment_words)/duration if duration > 0 else 0
if wps < preprocess_args.min_wps:
print(index, 'Skipping bad segment in',
video_id, '| wps =', wps)
continue
final_data[video_id].append({
'start': segment_start,
'end': segment_end,
'votes': line['votes'],
'locked': line['locked'] == '1',
'views': line['views'],
'reputation': line['reputation'],
'category': line['category'],
'action': line['actionType'],
'uuid': line['UUID'],
})
# Remove duplicate sponsor segments by choosing best (most votes)
for key in final_data:
final_data[key] = remove_duplicate_sponsor_segments(
final_data[key])
# Save data
with open(final_path, 'w') as fp:
json.dump(final_data, fp)
# final_data = preprocess(
# raw_dataset_path, final_path, preprocess_args.min_votes)
# # TODO save metadata in final.json?
elif os.path.exists(final_path):
# Already exists
logging.info(f'{final_path} exists, opening file')
with open(final_path) as fp:
final_data = json.load(fp)
logging.info(f'Found {len(final_data)} videos')
else:
return # Do not continue
# TODO shuffle final_data
# if not os.path.exists(excess_path) or preprocess_args.overwrite
# TODO use overwrite param
os.makedirs(dataset_args.data_dir, exist_ok=True)
positive_file = os.path.join(
dataset_args.data_dir, dataset_args.positive_file)
negative_file = os.path.join(
dataset_args.data_dir, dataset_args.negative_file)
if preprocess_args.do_generate:
print('Generating')
from model import get_tokenizer
# max_videos=preprocess_args.max_videos,
# max_segments=preprocess_args.max_segments,
# , max_videos, max_segments
tokenizer = get_tokenizer(model_args)
count_videos = 0
count_segments = 0 # TODO
write_mode = 'w' if preprocess_args.overwrite else 'a'
get_all = preprocess_args.max_videos is None
total = len(final_data) if get_all else preprocess_args.max_videos
index = 0
data = final_data.items()
if preprocess_args.skip_videos is not None:
print('Skipping first', preprocess_args.skip_videos, 'videos')
data = itertools.islice(data, preprocess_args.skip_videos, None)
index = preprocess_args.skip_videos
if get_all:
total = max(0, total - preprocess_args.skip_videos)
else:
total = min(len(final_data) -
preprocess_args.skip_videos, total)
with open(positive_file, write_mode, encoding='utf-8') as positive, \
open(negative_file, write_mode, encoding='utf-8') as negative, \
tqdm(total=total) as progress:
for video_id, sponsor_segments in data:
index += 1 # TODO FIX index + incrementing
progress.set_description(f'Processing {video_id}')
if get_all:
progress.update()
elif count_videos >= preprocess_args.max_videos:
break
words = get_words(video_id, process=False)
if not words:
continue
num_words = len(words)
if num_words <= 1:
continue
# TODO only count words that aren't [Music], [Applause], etc.
segments = segment.generate_labelled_segments(
words, tokenizer, segmentation_args, sponsor_segments)
if not segments:
continue
count_videos += 1
if not get_all:
progress.update()
for seg in segments:
duration = segment.word_end(
seg[-1]) - segment.word_start(seg[0])
wps = len(seg)/duration if duration > 0 else 0
# Ignore segments with "not enough words" in the transcript
if wps < preprocess_args.min_wps:
continue
segment_text = ' '.join((x['text'] for x in seg))
extracted_segments = extract_sponsors(seg)
d = {
'video_index': index,
'video_id': video_id,
'text': clean_text(segment_text),
'words_per_second': round(wps, 3),
}
if extracted_segments:
extracted_texts = []
for s in extracted_segments:
w = ' '.join(s['words'])
category = s['category'].upper()
t = f"{CustomTokens.START_SEGMENT.value}_{category} {w} {CustomTokens.END_SEGMENT.value}_{category}"
extracted_texts.append(t)
extracted_text = '\n'.join(extracted_texts)
d['extracted'] = clean_text(extracted_text)
print(json.dumps(d), file=positive)
else:
d['extracted'] = CustomTokens.NO_SEGMENT.value
print(json.dumps(d), file=negative)
if preprocess_args.do_split:
print('Splitting')
print('Read files')
with open(positive_file, encoding='utf-8') as positive:
sponsors = positive.readlines()
with open(negative_file, encoding='utf-8') as negative:
non_sponsors = negative.readlines()
print('Shuffle')
random.shuffle(sponsors)
random.shuffle(non_sponsors)
print('Calculate ratios')
# Ensure correct ratio of positive to negative segments
percentage_negative = 1 - preprocess_args.percentage_positive
if preprocess_args.percentage_positive * len(sponsors) > len(non_sponsors):
# Negative is limiting
z = int(preprocess_args.percentage_positive /
percentage_negative * len(non_sponsors))
excess = sponsors[z:]
sponsors = sponsors[:z]
else:
# Positive is limiting
z = int(percentage_negative /
preprocess_args.percentage_positive * len(sponsors))
excess = non_sponsors[z:]
non_sponsors = non_sponsors[:z]
print('Join')
all_labelled_segments = sponsors + non_sponsors
random.shuffle(all_labelled_segments)
print('Split')
ratios = [preprocess_args.train_split,
preprocess_args.test_split,
preprocess_args.valid_split]
train_data, test_data, valid_data = split(
all_labelled_segments, ratios)
splits = {
dataset_args.train_file: train_data,
dataset_args.test_file: test_data,
dataset_args.validation_file: valid_data
}
# Output training, testing and validation data
for name, items in splits.items():
outfile = os.path.join(dataset_args.data_dir, name)
if not os.path.exists(outfile) or preprocess_args.overwrite:
with open(outfile, 'w', encoding='utf-8') as fp:
fp.writelines(items)
else:
print('Skipping', name)
print('Write')
# Save excess items
excess_path = os.path.join(
dataset_args.data_dir, dataset_args.excess_file)
if not os.path.exists(excess_path) or preprocess_args.overwrite:
with open(excess_path, 'w', encoding='utf-8') as fp:
fp.writelines(excess)
else:
print('Skipping', dataset_args.excess_file)
print('Finished splitting:', len(sponsors),
'sponsors,', len(non_sponsors), 'non sponsors')
def split(arr, ratios):
"""Split array according to ratios. Sum of ratios should be less than 1"""
to_return = []
cumulative_sum = 0
for r in ratios:
current = cumulative_sum
cumulative_sum += r * len(arr)
to_return.append(arr[int(current):int(cumulative_sum)])
return to_return
if __name__ == '__main__':
main()
|