import os import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from config import CONFIG def mkdir_p(mypath): """Creates a directory. equivalent to using mkdir -p on the command line""" from errno import EEXIST from os import makedirs, path try: makedirs(mypath) except OSError as exc: # Python >2.5 if exc.errno == EEXIST and path.isdir(mypath): pass else: raise def visualize(target, input, recon, path): sr = CONFIG.DATA.sr window_size = 1024 window = np.hanning(window_size) stft_hr = librosa.core.spectrum.stft(target, n_fft=window_size, hop_length=512, window=window) stft_hr = 2 * np.abs(stft_hr) / np.sum(window) stft_lr = librosa.core.spectrum.stft(input, n_fft=window_size, hop_length=512, window=window) stft_lr = 2 * np.abs(stft_lr) / np.sum(window) stft_recon = librosa.core.spectrum.stft(recon, n_fft=window_size, hop_length=512, window=window) stft_recon = 2 * np.abs(stft_recon) / np.sum(window) fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharey=True, sharex=True, figsize=(16, 10)) ax1.title.set_text('Target signal') ax2.title.set_text('Lossy signal') ax3.title.set_text('Reconstructed signal') canvas = FigureCanvas(fig) p = librosa.display.specshow(librosa.amplitude_to_db(stft_hr), ax=ax1, y_axis='linear', x_axis='time', sr=sr) p = librosa.display.specshow(librosa.amplitude_to_db(stft_lr), ax=ax2, y_axis='linear', x_axis='time', sr=sr) p = librosa.display.specshow(librosa.amplitude_to_db(stft_recon), ax=ax3, y_axis='linear', x_axis='time', sr=sr) mkdir_p(path) fig.savefig(os.path.join(path, 'spec.png')) def get_power(x, nfft): S = librosa.stft(x, n_fft=nfft) S = np.log(np.abs(S) ** 2 + 1e-8) return S def LSD(x_hr, x_pr): S1 = get_power(x_hr, nfft=2048) S2 = get_power(x_pr, nfft=2048) lsd = np.mean(np.sqrt(np.mean((S1 - S2) ** 2 + 1e-8, axis=-1)), axis=0) S1 = S1[-(len(S1) - 1) // 2:, :] S2 = S2[-(len(S2) - 1) // 2:, :] lsd_high = np.mean(np.sqrt(np.mean((S1 - S2) ** 2 + 1e-8, axis=-1)), axis=0) return lsd, lsd_high