#!/usr/bin/env python # Copyright (c) Facebook, Inc. and its affiliates. """ A script to benchmark builtin models. Note: this script has an extra dependency of psutil. """ import itertools import logging import psutil import torch import tqdm from fvcore.common.timer import Timer from torch.nn.parallel import DistributedDataParallel from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import LazyConfig, get_cfg, instantiate from detectron2.data import ( DatasetFromList, build_detection_test_loader, build_detection_train_loader, ) from detectron2.data.benchmark import DataLoaderBenchmark from detectron2.engine import AMPTrainer, SimpleTrainer, default_argument_parser, hooks, launch from detectron2.modeling import build_model from detectron2.solver import build_optimizer from detectron2.utils import comm from detectron2.utils.collect_env import collect_env_info from detectron2.utils.events import CommonMetricPrinter from detectron2.utils.logger import setup_logger logger = logging.getLogger("detectron2") def setup(args): if args.config_file.endswith(".yaml"): cfg = get_cfg() cfg.merge_from_file(args.config_file) cfg.SOLVER.BASE_LR = 0.001 # Avoid NaNs. Not useful in this script anyway. cfg.merge_from_list(args.opts) cfg.freeze() else: cfg = LazyConfig.load(args.config_file) cfg = LazyConfig.apply_overrides(cfg, args.opts) setup_logger(distributed_rank=comm.get_rank()) return cfg def create_data_benchmark(cfg, args): if args.config_file.endswith(".py"): dl_cfg = cfg.dataloader.train dl_cfg._target_ = DataLoaderBenchmark return instantiate(dl_cfg) else: kwargs = build_detection_train_loader.from_config(cfg) kwargs.pop("aspect_ratio_grouping", None) kwargs["_target_"] = DataLoaderBenchmark return instantiate(kwargs) def RAM_msg(): vram = psutil.virtual_memory() return "RAM Usage: {:.2f}/{:.2f} GB".format( (vram.total - vram.available) / 1024**3, vram.total / 1024**3 ) def benchmark_data(args): cfg = setup(args) logger.info("After spawning " + RAM_msg()) benchmark = create_data_benchmark(cfg, args) benchmark.benchmark_distributed(250, 10) # test for a few more rounds for k in range(10): logger.info(f"Iteration {k} " + RAM_msg()) benchmark.benchmark_distributed(250, 1) def benchmark_data_advanced(args): # benchmark dataloader with more details to help analyze performance bottleneck cfg = setup(args) benchmark = create_data_benchmark(cfg, args) if comm.get_rank() == 0: benchmark.benchmark_dataset(100) benchmark.benchmark_mapper(100) benchmark.benchmark_workers(100, warmup=10) benchmark.benchmark_IPC(100, warmup=10) if comm.get_world_size() > 1: benchmark.benchmark_distributed(100) logger.info("Rerun ...") benchmark.benchmark_distributed(100) def benchmark_train(args): cfg = setup(args) model = build_model(cfg) logger.info("Model:\n{}".format(model)) if comm.get_world_size() > 1: model = DistributedDataParallel( model, device_ids=[comm.get_local_rank()], broadcast_buffers=False ) optimizer = build_optimizer(cfg, model) checkpointer = DetectionCheckpointer(model, optimizer=optimizer) checkpointer.load(cfg.MODEL.WEIGHTS) cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 2 data_loader = build_detection_train_loader(cfg) dummy_data = list(itertools.islice(data_loader, 100)) def f(): data = DatasetFromList(dummy_data, copy=False, serialize=False) while True: yield from data max_iter = 400 trainer = (AMPTrainer if cfg.SOLVER.AMP.ENABLED else SimpleTrainer)(model, f(), optimizer) trainer.register_hooks( [ hooks.IterationTimer(), hooks.PeriodicWriter([CommonMetricPrinter(max_iter)]), hooks.TorchProfiler( lambda trainer: trainer.iter == max_iter - 1, cfg.OUTPUT_DIR, save_tensorboard=True ), ] ) trainer.train(1, max_iter) @torch.no_grad() def benchmark_eval(args): cfg = setup(args) if args.config_file.endswith(".yaml"): model = build_model(cfg) DetectionCheckpointer(model).load(cfg.MODEL.WEIGHTS) cfg.defrost() cfg.DATALOADER.NUM_WORKERS = 0 data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0]) else: model = instantiate(cfg.model) model.to(cfg.train.device) DetectionCheckpointer(model).load(cfg.train.init_checkpoint) cfg.dataloader.num_workers = 0 data_loader = instantiate(cfg.dataloader.test) model.eval() logger.info("Model:\n{}".format(model)) dummy_data = DatasetFromList(list(itertools.islice(data_loader, 100)), copy=False) def f(): while True: yield from dummy_data for k in range(5): # warmup model(dummy_data[k]) max_iter = 300 timer = Timer() with tqdm.tqdm(total=max_iter) as pbar: for idx, d in enumerate(f()): if idx == max_iter: break model(d) pbar.update() logger.info("{} iters in {} seconds.".format(max_iter, timer.seconds())) if __name__ == "__main__": parser = default_argument_parser() parser.add_argument("--task", choices=["train", "eval", "data", "data_advanced"], required=True) args = parser.parse_args() assert not args.eval_only logger.info("Environment info:\n" + collect_env_info()) if "data" in args.task: print("Initial " + RAM_msg()) if args.task == "data": f = benchmark_data if args.task == "data_advanced": f = benchmark_data_advanced elif args.task == "train": """ Note: training speed may not be representative. The training cost of a R-CNN model varies with the content of the data and the quality of the model. """ f = benchmark_train elif args.task == "eval": f = benchmark_eval # only benchmark single-GPU inference. assert args.num_gpus == 1 and args.num_machines == 1 launch(f, args.num_gpus, args.num_machines, args.machine_rank, args.dist_url, args=(args,))