|
|
|
|
|
|
|
""" |
|
Panoptic-DeepLab Training Script. |
|
This script is a simplified version of the training script in detectron2/tools. |
|
""" |
|
|
|
import os |
|
import torch |
|
|
|
import detectron2.data.transforms as T |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import get_cfg |
|
from detectron2.data import MetadataCatalog, build_detection_train_loader |
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, launch |
|
from detectron2.evaluation import ( |
|
CityscapesInstanceEvaluator, |
|
CityscapesSemSegEvaluator, |
|
COCOEvaluator, |
|
COCOPanopticEvaluator, |
|
DatasetEvaluators, |
|
) |
|
from detectron2.projects.deeplab import build_lr_scheduler |
|
from detectron2.projects.panoptic_deeplab import ( |
|
PanopticDeeplabDatasetMapper, |
|
add_panoptic_deeplab_config, |
|
) |
|
from detectron2.solver import get_default_optimizer_params |
|
from detectron2.solver.build import maybe_add_gradient_clipping |
|
|
|
|
|
def build_sem_seg_train_aug(cfg): |
|
augs = [ |
|
T.ResizeShortestEdge( |
|
cfg.INPUT.MIN_SIZE_TRAIN, cfg.INPUT.MAX_SIZE_TRAIN, cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING |
|
) |
|
] |
|
if cfg.INPUT.CROP.ENABLED: |
|
augs.append(T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE)) |
|
augs.append(T.RandomFlip()) |
|
return augs |
|
|
|
|
|
class Trainer(DefaultTrainer): |
|
""" |
|
We use the "DefaultTrainer" which contains a number pre-defined logic for |
|
standard training workflow. They may not work for you, especially if you |
|
are working on a new research project. In that case you can use the cleaner |
|
"SimpleTrainer", or write your own training loop. |
|
""" |
|
|
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None): |
|
""" |
|
Create evaluator(s) for a given dataset. |
|
This uses the special metadata "evaluator_type" associated with each builtin dataset. |
|
For your own dataset, you can simply create an evaluator manually in your |
|
script and do not have to worry about the hacky if-else logic here. |
|
""" |
|
if cfg.MODEL.PANOPTIC_DEEPLAB.BENCHMARK_NETWORK_SPEED: |
|
return None |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
evaluator_list = [] |
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type |
|
if evaluator_type in ["cityscapes_panoptic_seg", "coco_panoptic_seg"]: |
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) |
|
if evaluator_type == "cityscapes_panoptic_seg": |
|
evaluator_list.append(CityscapesSemSegEvaluator(dataset_name)) |
|
evaluator_list.append(CityscapesInstanceEvaluator(dataset_name)) |
|
if evaluator_type == "coco_panoptic_seg": |
|
|
|
|
|
|
|
|
|
dataset_name_mapper = { |
|
"coco_2017_val_panoptic": "coco_2017_val", |
|
"coco_2017_val_100_panoptic": "coco_2017_val_100", |
|
} |
|
evaluator_list.append( |
|
COCOEvaluator(dataset_name_mapper[dataset_name], output_dir=output_folder) |
|
) |
|
if len(evaluator_list) == 0: |
|
raise NotImplementedError( |
|
"no Evaluator for the dataset {} with the type {}".format( |
|
dataset_name, evaluator_type |
|
) |
|
) |
|
elif len(evaluator_list) == 1: |
|
return evaluator_list[0] |
|
return DatasetEvaluators(evaluator_list) |
|
|
|
@classmethod |
|
def build_train_loader(cls, cfg): |
|
mapper = PanopticDeeplabDatasetMapper(cfg, augmentations=build_sem_seg_train_aug(cfg)) |
|
return build_detection_train_loader(cfg, mapper=mapper) |
|
|
|
@classmethod |
|
def build_lr_scheduler(cls, cfg, optimizer): |
|
""" |
|
It now calls :func:`detectron2.solver.build_lr_scheduler`. |
|
Overwrite it if you'd like a different scheduler. |
|
""" |
|
return build_lr_scheduler(cfg, optimizer) |
|
|
|
@classmethod |
|
def build_optimizer(cls, cfg, model): |
|
""" |
|
Build an optimizer from config. |
|
""" |
|
params = get_default_optimizer_params( |
|
model, |
|
weight_decay=cfg.SOLVER.WEIGHT_DECAY, |
|
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, |
|
) |
|
|
|
optimizer_type = cfg.SOLVER.OPTIMIZER |
|
if optimizer_type == "SGD": |
|
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)( |
|
params, |
|
cfg.SOLVER.BASE_LR, |
|
momentum=cfg.SOLVER.MOMENTUM, |
|
nesterov=cfg.SOLVER.NESTEROV, |
|
) |
|
elif optimizer_type == "ADAM": |
|
return maybe_add_gradient_clipping(cfg, torch.optim.Adam)(params, cfg.SOLVER.BASE_LR) |
|
else: |
|
raise NotImplementedError(f"no optimizer type {optimizer_type}") |
|
|
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
add_panoptic_deeplab_config(cfg) |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
return res |
|
|
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|