import streamlit as st import pdfplumber from transformers import AutoTokenizer, AutoModelForQuestionAnswering import torch from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.vectorstores import Chroma from langchain.chains import ConversationalRetrievalChain from langchain.memory import ConversationBufferMemory # โหลดโมเดล ThaiBERT จาก Hugging Face tokenizer = AutoTokenizer.from_pretrained("airesearch/wangchanberta-base-att-spm-uncased") model = AutoModelForQuestionAnswering.from_pretrained("airesearch/wangchanberta-base-att-spm-uncased") # ฟังก์ชันสำหรับอ่านเนื้อหาจาก PDF def extract_text_from_pdf(pdf_file): with pdfplumber.open(pdf_file) as pdf: text = "" for page in pdf.pages: text += page.extract_text() return text # ฟังก์ชันสำหรับการตอบคำถามด้วย ThaiBERT def answer_question(question, context): inputs = tokenizer.encode_plus(question, context, return_tensors="pt") answer_start_scores, answer_end_scores = model(**inputs) answer_start = torch.argmax(answer_start_scores.start_logits) answer_end = torch.argmax(answer_end_scores.end_logits) + 1 answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs['input_ids'][0][answer_start:answer_end])) return answer # ตั้งค่าอินเตอร์เฟสของหน้าเว็บด้วย Streamlit st.title("ThaiBERT PDF QA System") uploaded_file = st.file_uploader("Upload a PDF", type="pdf") if uploaded_file: # อ่านเนื้อหาจาก PDF pdf_text = extract_text_from_pdf(uploaded_file) # สร้าง chain สำหรับถามตอบ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.create_documents([pdf_text]) # สร้าง embeddings โดยใช้ transformers model_name = "sentence-transformers/paraphrase-xlm-r-multilingual-v1" embedding_model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # ปรับแต่ง Chroma กับ embeddings ของคุณ vector_store = Chroma.from_documents(documents=docs, embedding=embedding_model) retriever = vector_store.as_retriever() memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) qa_chain = ConversationalRetrievalChain( retriever=retriever, llm=None, # ลบ HuggingFaceHub เพราะไม่ได้ใช้งาน memory=memory ) # หน้าต่างสำหรับใส่คำถาม user_question = st.text_input("Ask a question about the PDF content") if user_question: response = qa_chain.run(user_question) st.write("Answer:", response)