import gradio as gr import os import asyncio import nest_asyncio from datetime import datetime from typing import Optional, Dict, Any from autogen_agentchat.agents import AssistantAgent, UserProxyAgent from autogen_agentchat.conditions import MaxMessageTermination, TextMentionTermination from autogen_agentchat.teams import SelectorGroupChat from autogen_ext.models.openai import OpenAIChatCompletionClient from autogen_ext.agents.web_surfer import MultimodalWebSurfer # Enable nested event loops nest_asyncio.apply() class AIShoppingAnalyzer: def __init__(self, api_key: str): self.api_key = api_key os.environ["OPENAI_API_KEY"] = api_key self.model_client = OpenAIChatCompletionClient(model="gpt-4o") self.termination = MaxMessageTermination(max_messages=20) | TextMentionTermination("TERMINATE") def create_websurfer(self) -> MultimodalWebSurfer: """Initialize the web surfer agent for e-commerce research""" description = ( "E-commerce research specialist that:\n" "1. Searches multiple retailers for product options\n" "2. Compares prices and reviews\n" "3. Checks product specifications and availability\n" "4. Analyzes website structure and findability\n" "5. Detects and analyzes structured data (Schema.org, JSON-LD, Microdata)\n" "6. Evaluates product markup and rich snippets\n" "7. Checks for proper semantic HTML and data organization" ) return MultimodalWebSurfer( name="websurfer_agent", description=description, model_client=self.model_client, headless=True, browser_kwargs={ "args": [ "--disable-dev-shm-usage", "--no-sandbox", "--disable-setuid-sandbox" ] } ) def create_assistant(self) -> AssistantAgent: """Initialize the shopping assistant agent""" system_message = ( "You are an expert shopping assistant and e-commerce analyst. " "Analyze websites and provide reports in this format:\n\n" "📊 E-COMMERCE ANALYSIS REPORT\n" "============================\n" "Site: {url}\n" "Date: {date}\n\n" "🔍 FINDABILITY SCORE: [★★★★☆]\n" "-----------------------------\n" "• Category Organization\n" "• Navigation Structure\n" "• Filter Systems\n\n" "📝 INFORMATION QUALITY: [★★★★☆]\n" "------------------------------\n" "• Product Details\n" "• Image Quality\n" "• Technical Specs\n" "• Structured Data\n\n" "🔄 NAVIGATION & SEARCH: [★★★★☆]\n" "------------------------------\n" "• Search Features\n" "• User Experience\n" "• Mobile Design\n\n" "💰 PRICING TRANSPARENCY: [★★★★☆]\n" "------------------------------\n" "• Price Display\n" "• Special Offers\n" "• Comparison Tools\n\n" "📈 OVERALL ASSESSMENT\n" "-------------------\n" "[Summary]\n\n" "🔧 TECHNICAL INSIGHTS\n" "-------------------\n" "[Technical Details]" ) return AssistantAgent( name="assistant_agent", description="E-commerce shopping advisor and website analyzer", system_message=system_message, model_client=self.model_client ) def create_team(self, websurfer_agent: MultimodalWebSurfer, assistant_agent: AssistantAgent) -> SelectorGroupChat: """Set up the team of agents""" user_proxy = UserProxyAgent( name="user_proxy", description="An e-commerce site owner looking for AI shopping analysis" ) selector_prompt = ( "You are coordinating an e-commerce analysis system. Select the next role from these participants:\n" "- The websurfer_agent searches products and analyzes website structure\n" "- The assistant_agent evaluates findings and makes recommendations\n" "- The user_proxy provides input when needed\n\n" "Return only the role name." ) return SelectorGroupChat( participants=[websurfer_agent, assistant_agent, user_proxy], selector_prompt=selector_prompt, model_client=self.model_client, termination_condition=self.termination ) async def analyze_site(self, website_url: str, product_category: str, specific_product: Optional[str] = None) -> str: """Run the analysis with proper cleanup""" websurfer = None try: query = ( f"Analyze the e-commerce experience for {website_url} focusing on:\n" f"1. Product findability in the {product_category} category\n" "2. Product information quality\n" "3. Navigation and search functionality\n" "4. Price visibility and comparison features" ) if specific_product: query += f"\n5. Detailed analysis of this specific product: {specific_product}" websurfer = self.create_websurfer() assistant = self.create_assistant() team = self.create_team(websurfer, assistant) try: result = [] async for message in team.run_stream(task=query): if isinstance(message, str): result.append(message) else: result.append(str(message)) return "\n".join(result) except EOFError: return "Analysis completed with some limitations. Please try again if results are incomplete." except Exception as e: return f"Analysis error: {str(e)}" finally: if websurfer: try: await websurfer.close() except Exception as e: print(f"Cleanup error: {str(e)}") def create_gradio_interface() -> gr.Blocks: """Create the Gradio interface for the AI Shopping Analyzer""" css = """ @import url('https://fonts.googleapis.com/css2?family=Open+Sans:wght@300;400;600;700&display=swap'); body { font-family: 'Open Sans', sans-serif !important; } .dashboard-container { border: 1px solid #e0e5ff; border-radius: 8px; background-color: #ffffff; } .token-header { font-size: 1.25rem; font-weight: 600; margin-top: 1rem; margin-bottom: 0.5rem; } .feature-button { display: inline-block; margin: 0.25rem; padding: 0.5rem 1rem; background-color: #f3f4f6; border: 1px solid #e5e7eb; border-radius: 0.375rem; font-size: 0.875rem; } .feature-button:hover { background-color: #e5e7eb; } .gr-form { background: transparent !important; border: none !important; box-shadow: none !important; } .gr-input, .gr-textarea { border: 1px solid #e5e7eb !important; border-radius: 6px !important; padding: 8px 12px !important; font-size: 14px !important; transition: all 0.2s !important; } .gr-input:focus, .gr-textarea:focus { border-color: #4c4ce3 !important; outline: none !important; box-shadow: 0 0 0 2px rgba(76, 76, 227, 0.2) !important; } .gr-button { background-color: #4c4ce3 !important; color: white !important; border-radius: 6px !important; padding: 8px 16px !important; font-size: 14px !important; font-weight: 600 !important; transition: all 0.2s !important; } .gr-button:hover { background-color: #3a3ab8 !important; } .analysis-output { background: white; padding: 20px; border-radius: 8px; border: 1px solid #e0e5ff; margin-top: 20px; } .analysis-output h1 { font-size: 1.5em; font-weight: bold; margin-bottom: 1em; } .analysis-output h2 { font-size: 1.25em; font-weight: 600; margin-top: 1.5em; margin-bottom: 0.5em; } .analysis-output h3 { font-size: 1.1em; font-weight: 600; margin-top: 1em; margin-bottom: 0.5em; } .analysis-output ul { margin-left: 1.5em; margin-bottom: 1em; } .analysis-output li { margin-bottom: 0.5em; } .analysis-output p { margin-bottom: 1em; line-height: 1.6; } .analysis-output code { background: #f3f4f6; padding: 0.2em 0.4em; border-radius: 4px; font-size: 0.9em; } """ async def run_analysis(api_key: str, website_url: str, product_category: str, specific_product: str) -> str: """Handle the analysis submission""" if not api_key.startswith("sk-"): return "Please enter a valid OpenAI API key (should start with 'sk-')" if not website_url: return "Please enter a website URL" if not product_category: return "Please specify a product category" try: analyzer = AIShoppingAnalyzer(api_key) result = await analyzer.analyze_site( website_url=website_url, product_category=product_category, specific_product=specific_product if specific_product else None ) return result except Exception as e: return f"Error during analysis: {str(e)}" with gr.Blocks(css=css) as demo: gr.HTML("""

AI Shopping Agent Analyzer

Analyze how your e-commerce site performs with AI shoppers

""") with gr.Group(): api_key = gr.Textbox( label="OpenAI API Key", placeholder="sk-...", type="password", container=True ) website_url = gr.Textbox( label="Website URL", placeholder="https://your-store.com", container=True ) product_category = gr.Textbox( label="Product Category", placeholder="e.g., Electronics, Clothing, etc.", container=True ) specific_product = gr.Textbox( label="Specific Product (Optional)", placeholder="e.g., Blue Widget Model X", container=True ) analyze_button = gr.Button( "Analyze Site", variant="primary" ) analysis_output = gr.Markdown( label="Analysis Results", value="Results will appear here...", elem_classes="analysis-output" ) analyze_button.click( fn=run_analysis, inputs=[api_key, website_url, product_category, specific_product], outputs=analysis_output ) return demo if __name__ == "__main__": print("Setting up Playwright...") try: import subprocess subprocess.run( ["playwright", "install", "chromium"], check=True, capture_output=True, text=True ) except Exception as e: print(f"Warning: Playwright setup encountered an issue: {str(e)}") print("Starting Gradio interface...") demo = create_gradio_interface() demo.launch()