import time import streamlit as st from annotated_text import annotated_text from flair.data import Sentence from flair.models import SequenceTagger checkpoints = [ "flair/pos-english", ] colors = {'ADD': '#b9d9a6', 'AFX': '#eddc92', 'CC': '#95e9d7', 'CD': '#e797db', 'DT': '#9ff48b', 'EX': '#ed92b4', 'FW': '#decfa1', 'HYPH': '#ada7d7', 'IN': '#85fad8', 'JJ': '#8ba4f4', 'JJR': '#e7a498', 'JJS': '#e5c79a', 'LS': '#eb94b6', 'MD': '#e698ae', 'NFP': '#d9d1a6', 'NN': '#96e89f', 'NNP': '#e698c6', 'NNPS': '#ddbfa2', 'NNS': '#f788cd', 'PDT': '#f19c8d', 'POS': '#8ed5f0', 'PRP': '#c4d8a6', 'PRP$': '#e39bdc', 'RB': '#8df1e2', 'RBR': '#d7f787', 'RBS': '#f986f0', 'RP': '#878df8', 'SYM': '#83fe80', 'TO': '#a6d8c9', 'UH': '#d9a6cc', 'VB': '#a1deda', 'VBD': '#8fefe1', 'VBG': '#e3c79b', 'VBN': '#fb81fe', 'VBP': '#d5fe81', 'VBZ': '#8084ff', 'WDT': '#dd80fe', 'WP': '#9ce3e3', 'WP$': '#9fbddf', 'WRB': '#dea1b5', 'XX': '#93b8ec'} @st.cache(suppress_st_warning=True, allow_output_mutation=True) def get_model(model_name): return SequenceTagger.load(model_name) # Load the model def getPos(s: Sentence): texts = [] labels = [] for t in s.tokens: for label in t.annotation_layers.keys(): texts.append(t.text) labels.append(t.get_labels(label)[0].value) return texts, labels def getDictFromPOS(texts, labels): return [{ "text": t, "label": l } for t, l in zip(texts, labels)] def getAnnotatedFromPOS(texts, labels): return [(t,l,colors[l]) for t, l in zip(texts, labels)] def main(): st.title("Part of Speech Categorizer") checkpoint = st.selectbox("Choose model", checkpoints) model = get_model(checkpoint) default_text = "This is an example sentence." input_text = st.text_area( label="Original text", value=default_text, ) start = None if st.button("Submit"): start = time.time() with st.spinner("Computing"): # Build Sentence s = Sentence(input_text) # predict tags model.predict(s) try: texts, labels = getPos(s) st.header("Labels:") anns = getAnnotatedFromPOS(texts, labels) annotated_text(*anns) st.header("JSON:") st.json(getDictFromPOS(texts, labels)) except Exception as e: st.error("Some error occured!" + str(e)) st.stop() st.write("---") if start is not None: st.text(f"prediction took {time.time() - start:.2f}s") if __name__ == "__main__": main()