File size: 7,657 Bytes
955f567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import os
from abc import ABC, abstractmethod

from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import SRTFormatter, WebVTTFormatter

# import whisperx
import stable_whisper
from faster_whisper import WhisperModel



class Transcription(ABC):

    def __init__(self, media_path, output_path, subtitle_format):
        self.media_path = media_path
        self.output_path = os.path.join(os.getcwd(), output_path)
        self.filename = os.path.splitext(media_path)[0]
        self.subtitle_format = subtitle_format

    @abstractmethod
    def generate_transcript(self):
        pass

    @abstractmethod
    def save_transcript(self):
        pass

class YouTubeTranscriptAPI(Transcription):
    def __init__(self, url, media_path, output_path, subtitle_format='srt', transcript_language='en'):
        super().__init__(media_path, output_path, subtitle_format)
        self.url = url
        self.video_id = url.split('v=')[1]
        self.transcript_language = transcript_language
        self.supported_subtitle_formats = ['srt', 'vtt']
        assert(self.subtitle_format.lower() in self.supported_subtitle_formats)

    def get_available_transcripts(self):
        '''
        Returns a dictionary of available transcripts & their info
        '''

        # Getting List of all Available Transcripts
        transcript_list = YouTubeTranscriptApi.list_transcripts(self.video_id)

        # Converting to Available Transcripts to Dictionary
        transcripts_info = dict()
        for transcript in transcript_list:
            transcript_info = {
                'language': transcript.language,
                'is_generated': transcript.is_generated,
                'is_translatable': transcript.is_translatable
            }
            transcripts_info[transcript.language_code] = transcript_info
        return transcripts_info

    def generate_transcript(self):
        '''
        Generates the transcript for the media file
        '''
        self.transcript = YouTubeTranscriptApi.get_transcript(self.video_id, languages=[self.transcript_language])

    def save_transcript(self):
        '''
        Writes the transcript into file
        '''

        # Getting the Formatter
        if self.subtitle_format == 'srt':
            formatter = SRTFormatter()
        elif self.subtitle_format == 'vtt':
            formatter = WebVTTFormatter()

        # Getting the Formatted Transcript
        formatted_transcript = formatter.format_transcript(self.transcript)

        # Writing the Formatted Transcript
        file_path = f'{self.filename}.{self.subtitle_format}'
        with open(file_path, 'w', encoding='utf-8') as transcript_file:
            transcript_file.write(formatted_transcript)
        return file_path


class Whisper(Transcription):
    def __init__(self, media_path, output_path, subtitle_format, word_level):
        super().__init__(media_path, output_path, subtitle_format)
        self.word_level = word_level
        self.supported_subtitle_formats = ['ass', 'srt', 'vtt']
        assert(self.subtitle_format.lower() in self.supported_subtitle_formats)


class FasterWhisper(Whisper):
    def __init__(self, media_path, output_path, subtitle_format='srt', word_level=True):
        super().__init__(media_path, output_path, subtitle_format, word_level)
        self.model = WhisperModel("large-v2", device="cuda", compute_type="float16")

    def generate_transcript(self):
        '''
        Generates the transcript for the media file
        '''

        all_text = []
        all_segments = []

        if self.word_level:

            # Generating Word Level Transcript
            segments, info = self.model.transcribe(self.media_path, word_timestamps=True)

            # Converting to Dictionary
            all_segments = []
            for segment in segments:
                for word in segment.words:
                    all_text.append(word.word)
                    segment_info = {
                        'text': word.word,
                        'start': round(word.start, 2),
                        'end': round(word.end, 2)
                    }
                    all_segments.append(segment_info)

        else:

            # Generating Word Level Transcript
            segments, info = self.model.transcribe(self.media_path, beam_size=5)

            # Converting to Dictionary
            for segment in segments:
                all_text.append(segment.text)
                segment_info = {
                    'text': segment.text,
                    'start': round(segment.start, 2),
                    'end': round(segment.end, 2)
                }
                all_segments.append(segment_info)

        # Setting Transcript Properties
        self.text = ' '.join(all_text)
        self.language = info.language
        self.segments = all_segments

        # Returning Transcript Properties as Dictionary
        transcript_dict = {
            'language': self.language,
            'text': self.text,
            'segments': self.segments
        }
        return transcript_dict


    def save_transcript(self, transcript, output_file):
        '''
        Writes the transcript into file
        '''
        # TODO: Can't seem to find any built-in methods for writing transcript
        pass

class StableWhisper(Whisper):
    def __init__(self, media_path, output_path, subtitle_format='srt', word_level=True):
        super().__init__(media_path, output_path, subtitle_format, word_level)
        self.model = stable_whisper.load_model('large-v2')

    def generate_transcript(self):
        '''
        Generates the transcript for the media file
        '''

        # Generating Word Level Transcript
        self.result = self.model.transcribe(self.media_path, word_timestamps=self.word_level)

        # Converting to Dictionary
        self.resultdict = self.result.to_dict()

        # Formatting Dictionary
        all_segments = []
        if self.word_level:

            all_segments = []
            for segment in self.resultdict['segments']:
                for word in segment['words']:
                    segment_info = {
                        'text': word['word'],
                        'start': round(word['start'], 2),
                        'end': round(word['end'], 2)
                    }
                    all_segments.append(segment_info)

        else:

            for segment in self.resultdict['segments']:
                segment_info = {
                    'text': segment['text'],
                    'start': round(segment['start'], 2),
                    'end': round(segment['end'], 2)
                }
                all_segments.append(segment_info)

        # Setting Transcript Properties
        self.text = self.resultdict['text']
        self.language = self.resultdict['language']
        self.segments = all_segments

        # Returning Transcript Properties as Dictionary
        transcript_dict = {
            'language': self.language,
            'text': self.text,
            'segments': self.segments
        }
        return transcript_dict

    def save_transcript(self):
        '''
        Writes the transcript into file
        '''
        # Writing according to the Format
        file_path = f'{self.filename}.{self.subtitle_format}'
        if self.subtitle_format == 'ass':
            self.result.to_ass(file_path, segment_level=True, word_level=self.word_level)
        elif self.subtitle_format in ['srt', 'vtt']:
            self.result.to_srt_vtt(file_path, segment_level=True, word_level=self.word_level)
        return file_path