from transformers import pipeline import gradio as gr import pytube import os import re pipe = pipeline(model="WayneLinn/Lab2") # change to "your-username/the-name-you-picked" def transcribe(link): video=link data=pytube.YouTube(video) audio=data.streams.get_audio_only() audio.download() pattern=r".mp4$" content=os.listdir() for i in content: if re.search(pattern,i) is not None: video=i text = pipe(video)["text"] return text iface = gr.Interface( fn=transcribe, inputs=gr.Textbox(label="Youtube Link",placeholder="Youtube Link"), outputs=["text"], title="Whisper Base", description="Realtime demo for speech recognition using a fine-tuned Whisper base model.", ) iface.launch()