import gradio as gr from nudenetupdated import NudeDetector detector = NudeDetector() def predict(image, checkbox): if checkbox: mode = "fast" else: mode = "default" try: result = detector.detect(image, mode) sections = [] for i in range(len(result)): print() sections.append(( result[i]['box'], result[i]['label'] )) output = (image, sections) return (output, result) except Exception as e: print(f"Got uncaught exception {type(e)}: {e}") gr.Interface( fn=predict, inputs=[ gr.Image(), gr.Checkbox(label="Fast"), ], outputs=[ gr.AnnotatedImage(label="Annotated Image"), gr.JSON(label="JSON") ] ).launch(server_name="0.0.0.0")