import cv2 import numpy as np from ultralytics import YOLO from arcface import ArcFace import pickle import os from datetime import datetime class FaceRecognitionSystem: def __init__(self, database_path="face_database.pkl", confidence_threshold=0.5, similarity_threshold=2): # Initialize YOLO for face detection self.yolo_model = YOLO('https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11s-face.pt') # Initialize ArcFace for face recognition self.face_rec = ArcFace.ArcFace("model.tflite") # Thresholds self.confidence_threshold = confidence_threshold self.similarity_threshold = similarity_threshold # Load or create face database self.database_path = database_path self.face_database = self.load_database() def load_database(self): if os.path.exists(self.database_path): with open(self.database_path, 'rb') as f: return pickle.load(f) return {} def save_database(self): with open(self.database_path, 'wb') as f: pickle.dump(self.face_database, f) def add_face_to_database(self, name, frame): """Add a new face to the database""" try: embedding = self.face_rec.calc_emb(frame) self.face_database[name] = embedding self.save_database() return True except Exception as e: print(f"Error adding face to database: {e}") return False def find_closest_match(self, embedding): """Find the closest matching face in the database""" if not self.face_database: return "Unknown", 1.0 min_distance = 10000 closest_name = "Unknown" for name, stored_embedding in self.face_database.items(): distance = self.face_rec.get_distance_embeddings(embedding, stored_embedding) if distance < min_distance: min_distance = distance closest_name = name return closest_name, min_distance def process_frame(self, frame): """Process a single frame""" # Run YOLO detection results = self.yolo_model(frame, verbose=False)[0] # Process each detected face for detection in results.boxes.data: x1, y1, x2, y2, conf, _ = detection if conf < self.confidence_threshold: continue # Convert coordinates to integers x1, y1, x2, y2 = map(int, [x1, y1, x2, y2]) # Extract face region face_region = frame[y1:y2, x1:x2] try: # Calculate face embedding embedding = self.face_rec.calc_emb(face_region) # Find closest match name, distance = self.find_closest_match(embedding) # Determine if match is close enough if distance > self.similarity_threshold: name = "Unknown" # Draw rectangle and name cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(frame, f"{name} ({conf:.2f})", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) except Exception as e: print(f"Error processing face: {e}") return frame def run(self): """Run the face recognition system on webcam feed""" cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # Process the frame processed_frame = self.process_frame(frame) # Display the result cv2.imshow('Face Recognition', processed_frame) key = cv2.waitKey(1) if key == ord('q'): break elif key == ord('a'): # Add new face to database name = input("Enter name for new face: ") if self.add_face_to_database(name, frame): print(f"Successfully added {name} to database") else: print("Failed to add face to database") cap.release() cv2.destroyAllWindows()