import requests import numpy as np import cv2 as cv2 from PIL import Image import torch import torch.nn.functional as F import open_clip import gradio as gr import spaces from legrad import LeWrapper, LePreprocess device = torch.device("cuda" if torch.cuda.is_available() else "cpu") layer_index = -2 # will run on cpu image_size = 448 # ---------- Init CLIP Model ---------- model_name = 'ViT-B-16' pretrained = 'laion2b_s34b_b88k' patch_size = 16 model, _, preprocess = open_clip.create_model_and_transforms(model_name, pretrained=pretrained, device=device) tokenizer = open_clip.get_tokenizer(model_name) # ---------- Apply LeGrad's wrappers ---------- model = LeWrapper(model) preprocess = LePreprocess(preprocess=preprocess, image_size=image_size) # ---------- Function to load image from URL ---------- def change_to_url(url): img_pil = Image.open(requests.get(url, stream=True).raw).convert('RGB') return img_pil def _get_text_embedding(model, tokenizer, classes: list, device): prompts = [f'a photo of a {cls}.' for cls in classes] tokenized_prompts = tokenizer(prompts).to(device) text_embedding = model.encode_text(tokenized_prompts) text_embedding = F.normalize(text_embedding, dim=-1) return text_embedding.unsqueeze(0) # ---------- Function to convert logits to heatmaps ---------- def logits_to_heatmaps(logits, image_cv): logits = logits[0, 0].detach().cpu().numpy() logits = (logits * 255).astype('uint8') heat_map = cv2.applyColorMap(logits, cv2.COLORMAP_JET) viz = 0.4 * image_cv + 0.6 * heat_map viz = cv2.cvtColor(viz.astype('uint8'), cv2.COLOR_BGR2RGB) return viz # ---------- Main visualization function ---------- @spaces.GPU def viz_func(url, image, text_query): image_torch = preprocess(image).unsqueeze(0).to(device) text_emb = _get_text_embedding(model, tokenizer, classes=[text_query], device=device) # ------- Get LeGrad output ------- logits_legrad = model.compute_legrad(image=image_torch, text_embedding=text_emb) # ------- Get Heatmpas ------- image_cv = cv2.cvtColor(np.array(image.resize((image_size, image_size))), cv2.COLOR_RGB2BGR) viz_legrad = logits_to_heatmaps(logits=logits_legrad, image_cv=image_cv) return viz_legrad inputs = [ gr.Textbox(label="Paste the url to the selected image"), gr.Image(type="pil", interactive=True, label='Select An Image'), gr.Textbox(label="Text query"), ] with gr.Blocks(css="#gradio-app-title { text-align: center; }") as demo: gr.Markdown( """ # **LeGrad: An Explainability Method for Vision Transformers via Feature Formation Sensitivity** ### This demo that showcases LeGrad method to visualize the important regions in an image that correspond to a given text query. The model used is OpenCLIP-ViT-B-16 (weights: `laion2b_s34b_b88k`) """ ) with gr.Row(): with gr.Column(): gr.Markdown('# Select An Image') selected_image = gr.Image(type="pil", interactive=True, label='') gr.Markdown('## Paste the url to the selected image') url_query = gr.Textbox(label="") gr.Markdown('# Create your Own query') text_query = gr.Textbox(label='') run_button = gr.Button(icon='https://cdn-icons-png.flaticon.com/512/3348/3348036.png') inputs[0].change(fn=change_to_url, outputs=inputs[1], inputs=inputs[0]) gr.Markdown('## LeGrad Explanation') le_grad_output = gr.Image(label='LeGrad') run_button.click(fn=viz_func, inputs=[url_query, selected_image, text_query], outputs=[le_grad_output]) with gr.Column(): gr.Markdown('# Select a Premade Example') gr.Examples( examples=[ ["assets/cats_remote_control.jpeg", "cat"], ["assets/cats_remote_control.jpeg", "remote control"], ["assets/la_baguette.webp", "la baguette"], ["assets/la_baguette.webp", "beret"], ["assets/pokemons.jpeg", "Pikachu"], ["assets/pokemons.jpeg", "Bulbasaur"], ["assets/pokemons.jpeg", "Charmander"], ["assets/pokemons.jpeg", "Pokemons"], ], inputs=[selected_image, text_query], outputs=[le_grad_output], fn=viz_func, label='' ) demo.queue() demo.launch()