import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Pengenalan Ras Hewan Peliharaan Kucing dan Anjing" description = "Selamat Datang di Aplikasi Pengklasifikasi ras Hewan Peliharaan yang di training pada kumpulan data Oxford Pets dengan Fastai :D" article="

Blog post

" examples = ['cat.jpg'] image = gr.Image(type="pil")#gr.inputs.Image(shape=(192, 192)) label = gr.Label(num_top_classes=3)#gr.outputs.Label() gr.Interface(fn=predict,inputs=image, outputs=label,title=title, description=description,article=article,examples=examples).launch()