import streamlit as st import pandas as pd import numpy as np from transformers import pipeline from geopy.geocoders import Nominatim # Load Models @st.cache_resource def load_llama_small_model(): model_name = "meta-llama/Llama-2-7b" generator = pipeline("text-generation", model=model_name) return generator @st.cache_resource def load_llama_large_model(): model_name = "meta-llama/Llama-3.1-405b" generator = pipeline("text-generation", model=model_name) return generator @st.cache_resource def load_multimodal_model(): model_name = "google/vit-base-patch16-224" vision_model = pipeline("image-classification", model=model_name) return vision_model @st.cache_resource def load_text_classification_model(): model_name = "distilbert-base-uncased" text_classifier = pipeline("text-classification", model=model_name) return text_classifier def main(): st.title("AI-Powered Telecom Solution for Underserved Areas") st.write("This app is designed to leverage AI-powered models for optimizing telecommunication infrastructure in underserved areas.") st.sidebar.title("Options") option = st.sidebar.selectbox( "Select a Functionality", ("Network Planning Assistance", "Community Content Translation", "Operational Diagnostics", "Workflow Optimization") ) if option == "Network Planning Assistance": st.header("Network Planning Assistance") address = st.text_input("Enter a location to analyze network suitability:") if st.button("Analyze Location"): if address: geolocator = Nominatim(user_agent="geoapiExercises") location = geolocator.geocode(address) if location: st.write(f"Location found: {location.address}") st.map(pd.DataFrame(np.array([[location.latitude, location.longitude]]), columns=['lat', 'lon'])) st.write("Using Llama models to suggest optimal network deployment...") small_model = load_llama_small_model() large_model = load_llama_large_model() small_result = small_model(f"Provide initial suggestions for network deployment at {location.address}. Consider rural telecommunication needs.", max_length=100) large_result = large_model(f"Provide detailed suggestions for network deployment at {location.address}, considering infrastructure limitations and long-term scalability.", max_length=200) st.success("Initial Suggestions:") st.write(small_result[0]['generated_text']) st.success("Detailed Analysis:") st.write(large_result[0]['generated_text']) else: st.error("Location not found. Please try another address.") else: st.error("Please enter a location to proceed.") elif option == "Community Content Translation": st.header("Community Content Translation Assistance") text_to_translate = st.text_area("Enter content to translate for local communities:") if st.button("Translate Content"): if text_to_translate: small_model = load_llama_small_model() large_model = load_llama_large_model() translation_result = small_model(f"Translate the following content into a simple language suitable for rural communities: {text_to_translate}", max_length=100) classification_model = load_text_classification_model() content_type = classification_model(text_to_translate) st.success("Translated Content:") st.write(translation_result[0]['generated_text']) st.success("Content Type Classification:") st.write(content_type) else: st.error("Please enter content to proceed.") elif option == "Operational Diagnostics": st.header("Operational Maintenance & Network Troubleshooting") uploaded_file = st.file_uploader("Upload network diagnostic image (e.g., hardware photo):") if uploaded_file is not None: st.image(uploaded_file, caption='Uploaded Diagnostic Image', use_column_width=True) with st.spinner("Analyzing the image..."): vision_model = load_multimodal_model() result = vision_model(uploaded_file) st.success("Analysis Result:") st.write(result) elif option == "Workflow Optimization": st.header("Workflow Optimization for Telecom Operations") st.write("This feature helps optimize administrative and regulatory workflows using AI models.") task_description = st.text_area("Enter a workflow task that needs optimization:") if st.button("Optimize Workflow"): if task_description: large_model = load_llama_large_model() result = large_model(f"Optimize the following workflow for better efficiency: {task_description}", max_length=150) st.success("Optimized Workflow Suggestion:") st.write(result[0]['generated_text']) else: st.error("Please enter a workflow task to proceed.") if __name__ == "__main__": main()