import pickle import pandas as pd import sklearn import gradio as gr import joblib # In[38]: def encode_df(df): # Gender sex_map = {"Male": 1, "Female": 0} df = df.replace({"Gender": sex_map}) # Tipe Angina chestpain_map = {"Typical": 0, "Asymptomatic": 1, "Nonanginal": 2, "Nontypical": 3} df = df.replace({"Tipe_angina": chestpain_map}) # Gula_darah_puasa fastingBLP_map = {"<120": 0, ">120": 1, "120": 2} df = df.replace({"Gula_darah_puasa": fastingBLP_map}) # Angina_aktivitas exang_map = {"No": 0, "Yes": 1} df = df.replace({"Angina_aktivitas": exang_map}) # Hasil_Elektrokardiografi recg_map = {"Normal": 0, "Abnormal Wave": 1, "Left Ventricular Hypertrophy": 2} df = df.replace({"Hasil_Elektrokardiografi": recg_map}) # st_slope_ECG slope_map = {"Upsloping": 1, "Flat": 2, "Downsloping": 3} df = df.replace({"st_slope_ECG": slope_map}) df = df[ [ "Umur", "Gender", "Tipe_angina", "Tekanan_darah_istirahat", "Kolesterol", "Gula_darah_puasa", "Hasil_Elektrokardiografi", "Denyut_jantung_max", "Angina_aktivitas", "st_depression_ECG", "st_slope_ECG", ] ] return df filename = 'ACS_model_random_forest.sav' # load the model from disk loaded_model = joblib.load(filename) # In[51]: def predict(Umur, Gender, Tipe_angina, Tekanan_darah_istirahat, Kolesterol, Gula_darah_puasa, Hasil_Elektrokardiografi, Denyut_jantung_max, Angina_aktivitas, st_depression_ECG, st_slope_ECG): df = pd.DataFrame.from_dict( { "Umur": [Umur], "Gender": [Gender], "Tipe_angina": [Tipe_angina], "Tekanan_darah_istirahat": [Tekanan_darah_istirahat], "Kolesterol": [Kolesterol], "Gula_darah_puasa": [Gula_darah_puasa], "Hasil_Elektrokardiografi": [Hasil_Elektrokardiografi], "Denyut_jantung_max": [Denyut_jantung_max], "Angina_aktivitas": [Angina_aktivitas], "st_depression_ECG": [st_depression_ECG], "st_slope_ECG": [st_slope_ECG], } ) df = encode_df(df) pred = loaded_model.predict_proba(df)[0] output = {"Possible Heart Disease": float(pred[1]), "Less chance of Heart Disease": float(pred[0])} return output title = "Interactive Demonstration for Acute Coronary Syndrome Prediction System" des = '''This model predicts the possibility of a heart disease using a hybrid sampling SMOTE-TOMEK model that achieved an high accuracy of 85% with Random Forest Algorithm''' article = "
Created by @Vrooh933 Production | GitHub Profile" demo = gr.Interface(predict, [gr.Slider(0, 88, value=25, label='Umur'), gr.Radio(["Male", "Female"], label='Gender'), gr.Dropdown(["Typical", "Asymptomatic", "Nonanginal", "Nontypical"], label="Tipe_angina"), gr.Slider(0, 200, value=125, label='Tekanan_darah_istirahat'), gr.Slider(0, 603, value=50, label='Kolesterol'), gr.Radio(["<120", ">120", '120'], label='Gula_darah_puasa'), gr.Dropdown(["Normal", "Abnormal Wave", "Left Ventricular Hypertrophy"], label='Hasil_Elektrokardiografi'), gr.Number(value=100, label='Denyut_jantung_max'), gr.Dropdown(["No", "Yes"], label='Angina_aktivitas'), gr.Slider(-2.6, 6.2, value=3.1, label='st_depression_ECG'), gr.Radio(["Upsloping", "Flat", "Downsloping"], label='st_slope_ECG'), ], "label", examples=[[37, 'Male', 'Typical', 89, 276, '>120', "Left Ventricular Hypertrophy", 150, 'No', 2.3, 'Downsloping', 0, 'Fixed'], [63, 'Male', 'Typical', 50, 100, '<120', "Abnormal Wave", 90, 'No', 1.0, 'Downsloping', 1, 'Reversable'], [58, 'Female', 'Asymptomatic', 70, 500, '>120', "Normal", 111, 'Yes', 0.8, 'Flat', 0, 'Normal'] ], title=title, description=des, article=article, live=True, ) # In[53]: if __name__ == "__main__": demo.launch()