Spaces:
Runtime error
Runtime error
File size: 9,849 Bytes
9b2107c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
from dataclasses import asdict, dataclass
from typing import List
from coqpit import Coqpit, check_argument
from trainer import TrainerConfig
@dataclass
class BaseAudioConfig(Coqpit):
"""Base config to definge audio processing parameters. It is used to initialize
```TTS.utils.audio.AudioProcessor.```
Args:
fft_size (int):
Number of STFT frequency levels aka.size of the linear spectogram frame. Defaults to 1024.
win_length (int):
Each frame of audio is windowed by window of length ```win_length``` and then padded with zeros to match
```fft_size```. Defaults to 1024.
hop_length (int):
Number of audio samples between adjacent STFT columns. Defaults to 1024.
frame_shift_ms (int):
Set ```hop_length``` based on milliseconds and sampling rate.
frame_length_ms (int):
Set ```win_length``` based on milliseconds and sampling rate.
stft_pad_mode (str):
Padding method used in STFT. 'reflect' or 'center'. Defaults to 'reflect'.
sample_rate (int):
Audio sampling rate. Defaults to 22050.
resample (bool):
Enable / Disable resampling audio to ```sample_rate```. Defaults to ```False```.
preemphasis (float):
Preemphasis coefficient. Defaults to 0.0.
ref_level_db (int): 20
Reference Db level to rebase the audio signal and ignore the level below. 20Db is assumed the sound of air.
Defaults to 20.
do_sound_norm (bool):
Enable / Disable sound normalization to reconcile the volume differences among samples. Defaults to False.
log_func (str):
Numpy log function used for amplitude to DB conversion. Defaults to 'np.log10'.
do_trim_silence (bool):
Enable / Disable trimming silences at the beginning and the end of the audio clip. Defaults to ```True```.
do_amp_to_db_linear (bool, optional):
enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True.
do_amp_to_db_mel (bool, optional):
enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True.
pitch_fmax (float, optional):
Maximum frequency of the F0 frames. Defaults to ```640```.
pitch_fmin (float, optional):
Minimum frequency of the F0 frames. Defaults to ```1```.
trim_db (int):
Silence threshold used for silence trimming. Defaults to 45.
do_rms_norm (bool, optional):
enable/disable RMS volume normalization when loading an audio file. Defaults to False.
db_level (int, optional):
dB level used for rms normalization. The range is -99 to 0. Defaults to None.
power (float):
Exponent used for expanding spectrogra levels before running Griffin Lim. It helps to reduce the
artifacts in the synthesized voice. Defaults to 1.5.
griffin_lim_iters (int):
Number of Griffing Lim iterations. Defaults to 60.
num_mels (int):
Number of mel-basis frames that defines the frame lengths of each mel-spectrogram frame. Defaults to 80.
mel_fmin (float): Min frequency level used for the mel-basis filters. ~50 for male and ~95 for female voices.
It needs to be adjusted for a dataset. Defaults to 0.
mel_fmax (float):
Max frequency level used for the mel-basis filters. It needs to be adjusted for a dataset.
spec_gain (int):
Gain applied when converting amplitude to DB. Defaults to 20.
signal_norm (bool):
enable/disable signal normalization. Defaults to True.
min_level_db (int):
minimum db threshold for the computed melspectrograms. Defaults to -100.
symmetric_norm (bool):
enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else
[0, k], Defaults to True.
max_norm (float):
```k``` defining the normalization range. Defaults to 4.0.
clip_norm (bool):
enable/disable clipping the our of range values in the normalized audio signal. Defaults to True.
stats_path (str):
Path to the computed stats file. Defaults to None.
"""
# stft parameters
fft_size: int = 1024
win_length: int = 1024
hop_length: int = 256
frame_shift_ms: int = None
frame_length_ms: int = None
stft_pad_mode: str = "reflect"
# audio processing parameters
sample_rate: int = 22050
resample: bool = False
preemphasis: float = 0.0
ref_level_db: int = 20
do_sound_norm: bool = False
log_func: str = "np.log10"
# silence trimming
do_trim_silence: bool = True
trim_db: int = 45
# rms volume normalization
do_rms_norm: bool = False
db_level: float = None
# griffin-lim params
power: float = 1.5
griffin_lim_iters: int = 60
# mel-spec params
num_mels: int = 80
mel_fmin: float = 0.0
mel_fmax: float = None
spec_gain: int = 20
do_amp_to_db_linear: bool = True
do_amp_to_db_mel: bool = True
# f0 params
pitch_fmax: float = 640.0
pitch_fmin: float = 1.0
# normalization params
signal_norm: bool = True
min_level_db: int = -100
symmetric_norm: bool = True
max_norm: float = 4.0
clip_norm: bool = True
stats_path: str = None
def check_values(
self,
):
"""Check config fields"""
c = asdict(self)
check_argument("num_mels", c, restricted=True, min_val=10, max_val=2056)
check_argument("fft_size", c, restricted=True, min_val=128, max_val=4058)
check_argument("sample_rate", c, restricted=True, min_val=512, max_val=100000)
check_argument(
"frame_length_ms",
c,
restricted=True,
min_val=10,
max_val=1000,
alternative="win_length",
)
check_argument("frame_shift_ms", c, restricted=True, min_val=1, max_val=1000, alternative="hop_length")
check_argument("preemphasis", c, restricted=True, min_val=0, max_val=1)
check_argument("min_level_db", c, restricted=True, min_val=-1000, max_val=10)
check_argument("ref_level_db", c, restricted=True, min_val=0, max_val=1000)
check_argument("power", c, restricted=True, min_val=1, max_val=5)
check_argument("griffin_lim_iters", c, restricted=True, min_val=10, max_val=1000)
# normalization parameters
check_argument("signal_norm", c, restricted=True)
check_argument("symmetric_norm", c, restricted=True)
check_argument("max_norm", c, restricted=True, min_val=0.1, max_val=1000)
check_argument("clip_norm", c, restricted=True)
check_argument("mel_fmin", c, restricted=True, min_val=0.0, max_val=1000)
check_argument("mel_fmax", c, restricted=True, min_val=500.0, allow_none=True)
check_argument("spec_gain", c, restricted=True, min_val=1, max_val=100)
check_argument("do_trim_silence", c, restricted=True)
check_argument("trim_db", c, restricted=True)
@dataclass
class BaseDatasetConfig(Coqpit):
"""Base config for TTS datasets.
Args:
formatter (str):
Formatter name that defines used formatter in ```TTS.tts.datasets.formatter```. Defaults to `""`.
dataset_name (str):
Unique name for the dataset. Defaults to `""`.
path (str):
Root path to the dataset files. Defaults to `""`.
meta_file_train (str):
Name of the dataset meta file. Or a list of speakers to be ignored at training for multi-speaker datasets.
Defaults to `""`.
ignored_speakers (List):
List of speakers IDs that are not used at the training. Default None.
language (str):
Language code of the dataset. If defined, it overrides `phoneme_language`. Defaults to `""`.
phonemizer (str):
Phonemizer used for that dataset's language. By default it uses `DEF_LANG_TO_PHONEMIZER`. Defaults to `""`.
meta_file_val (str):
Name of the dataset meta file that defines the instances used at validation.
meta_file_attn_mask (str):
Path to the file that lists the attention mask files used with models that require attention masks to
train the duration predictor.
"""
formatter: str = ""
dataset_name: str = ""
path: str = ""
meta_file_train: str = ""
ignored_speakers: List[str] = None
language: str = ""
phonemizer: str = ""
meta_file_val: str = ""
meta_file_attn_mask: str = ""
def check_values(
self,
):
"""Check config fields"""
c = asdict(self)
check_argument("formatter", c, restricted=True)
check_argument("path", c, restricted=True)
check_argument("meta_file_train", c, restricted=True)
check_argument("meta_file_val", c, restricted=False)
check_argument("meta_file_attn_mask", c, restricted=False)
@dataclass
class BaseTrainingConfig(TrainerConfig):
"""Base config to define the basic 🐸TTS training parameters that are shared
among all the models. It is based on ```Trainer.TrainingConfig```.
Args:
model (str):
Name of the model that is used in the training.
num_loader_workers (int):
Number of workers for training time dataloader.
num_eval_loader_workers (int):
Number of workers for evaluation time dataloader.
"""
model: str = None
# dataloading
num_loader_workers: int = 0
num_eval_loader_workers: int = 0
use_noise_augment: bool = False
|