from smolagents import Tool import pandas as pd import os import tempfile import requests from urllib.parse import urlparse import json import re from datetime import datetime, timedelta class ReverseTextTool(Tool): name = "reverse_text" description = "Reverses the text in a string." inputs = { "text": { "type": "string", "description": "The text to reverse." } } output_type = "string" def forward(self, text: str) -> str: return text[::-1] class ExtractTextFromImageTool(Tool): name = "extract_text_from_image" description = "Extracts text from an image file using OCR." inputs = { "image_path": { "type": "string", "description": "Path to the image file." } } output_type = "string" def forward(self, image_path: str) -> str: try: # Try to import pytesseract import pytesseract from PIL import Image # Open the image image = Image.open(image_path) # Try different configurations for better results configs = [ '--psm 6', # Assume a single uniform block of text '--psm 3', # Automatic page segmentation, but no OSD '--psm 1', # Automatic page segmentation with OSD ] results = [] for config in configs: try: text = pytesseract.image_to_string(image, config=config) if text.strip(): results.append(text) except Exception: continue if results: # Return the longest result, which is likely the most complete return f"Extracted text from image:\n\n{max(results, key=len)}" else: return "No text could be extracted from the image." except ImportError: return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system." except Exception as e: return f"Error extracting text from image: {str(e)}" class AnalyzeCSVTool(Tool): name = "analyze_csv_file" description = "Analyzes a CSV file and provides information about its contents." inputs = { "file_path": { "type": "string", "description": "Path to the CSV file." }, "query": { "type": "string", "description": "Optional query about the data.", "default": "", "nullable": True } } output_type = "string" def forward(self, file_path: str, query: str = "") -> str: try: # Read CSV file with different encodings if needed for encoding in ['utf-8', 'latin1', 'iso-8859-1', 'cp1252']: try: df = pd.read_csv(file_path, encoding=encoding) break except UnicodeDecodeError: continue else: return "Error: Could not read the CSV file with any of the attempted encodings." # Basic information result = f"CSV file has {len(df)} rows and {len(df.columns)} columns.\n" result += f"Columns: {', '.join(df.columns)}\n\n" # If there's a specific query if query: if "count" in query.lower(): result += f"Row count: {len(df)}\n" # Look for column-specific queries for col in df.columns: if col.lower() in query.lower(): result += f"\nColumn '{col}' information:\n" if pd.api.types.is_numeric_dtype(df[col]): result += f"Min: {df[col].min()}\n" result += f"Max: {df[col].max()}\n" result += f"Mean: {df[col].mean()}\n" result += f"Median: {df[col].median()}\n" else: # For categorical data value_counts = df[col].value_counts().head(10) result += f"Unique values: {df[col].nunique()}\n" result += f"Top values:\n{value_counts.to_string()}\n" # General statistics for all columns else: # For numeric columns numeric_cols = df.select_dtypes(include=['number']).columns if len(numeric_cols) > 0: result += "Numeric columns statistics:\n" result += df[numeric_cols].describe().to_string() result += "\n\n" # For categorical columns, show counts of unique values cat_cols = df.select_dtypes(exclude=['number']).columns if len(cat_cols) > 0: result += "Categorical columns:\n" for col in cat_cols[:5]: # Limit to first 5 columns result += f"- {col}: {df[col].nunique()} unique values\n" return result except Exception as e: return f"Error analyzing CSV file: {str(e)}" class AnalyzeExcelTool(Tool): name = "analyze_excel_file" description = "Analyzes an Excel file and provides information about its contents." inputs = { "file_path": { "type": "string", "description": "Path to the Excel file." }, "query": { "type": "string", "description": "Optional query about the data.", "default": "", "nullable": True }, "sheet_name": { "type": "string", "description": "Name of the sheet to analyze (defaults to first sheet).", "default": None, "nullable": True } } output_type = "string" def forward(self, file_path: str, query: str = "", sheet_name: str = None) -> str: try: # Read sheet names first excel_file = pd.ExcelFile(file_path) sheet_names = excel_file.sheet_names # Info about all sheets result = f"Excel file contains {len(sheet_names)} sheets: {', '.join(sheet_names)}\n\n" # If sheet name is specified, use it; otherwise use first sheet if sheet_name is None: sheet_name = sheet_names[0] elif sheet_name not in sheet_names: return f"Error: Sheet '{sheet_name}' not found. Available sheets: {', '.join(sheet_names)}" # Read the specified sheet df = pd.read_excel(file_path, sheet_name=sheet_name) # Basic information result += f"Sheet '{sheet_name}' has {len(df)} rows and {len(df.columns)} columns.\n" result += f"Columns: {', '.join(df.columns)}\n\n" # Handle query similar to CSV tool if query: if "count" in query.lower(): result += f"Row count: {len(df)}\n" # Look for column-specific queries for col in df.columns: if col.lower() in query.lower(): result += f"\nColumn '{col}' information:\n" if pd.api.types.is_numeric_dtype(df[col]): result += f"Min: {df[col].min()}\n" result += f"Max: {df[col].max()}\n" result += f"Mean: {df[col].mean()}\n" result += f"Median: {df[col].median()}\n" else: # For categorical data value_counts = df[col].value_counts().head(10) result += f"Unique values: {df[col].nunique()}\n" result += f"Top values:\n{value_counts.to_string()}\n" else: # For numeric columns numeric_cols = df.select_dtypes(include=['number']).columns if len(numeric_cols) > 0: result += "Numeric columns statistics:\n" result += df[numeric_cols].describe().to_string() result += "\n\n" # For categorical columns, show counts of unique values cat_cols = df.select_dtypes(exclude=['number']).columns if len(cat_cols) > 0: result += "Categorical columns:\n" for col in cat_cols[:5]: # Limit to first 5 columns result += f"- {col}: {df[col].nunique()} unique values\n" return result except Exception as e: return f"Error analyzing Excel file: {str(e)}" class DateCalculatorTool(Tool): name = "date_calculator" description = "Performs date calculations like adding days, formatting dates, etc." inputs = { "query": { "type": "string", "description": "The date calculation to perform (e.g., 'What day is 10 days from today?', 'Format 2023-05-15 as MM/DD/YYYY')" } } output_type = "string" def forward(self, query: str) -> str: try: # Get current date/time if re.search(r'(today|now|current date|current time)', query, re.IGNORECASE): now = datetime.now() if 'time' in query.lower(): return f"Current date and time: {now.strftime('%Y-%m-%d %H:%M:%S')}" else: return f"Today's date: {now.strftime('%Y-%m-%d')}" # Add days to a date add_match = re.search(r'(what|when).+?(\d+)\s+(day|days|week|weeks|month|months|year|years)\s+(from|after)\s+(.+)', query, re.IGNORECASE) if add_match: amount = int(add_match.group(2)) unit = add_match.group(3).lower() date_text = add_match.group(5).strip() # Parse the date if date_text.lower() in ['today', 'now']: base_date = datetime.now() else: try: # Try various date formats for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']: try: base_date = datetime.strptime(date_text, fmt) break except ValueError: continue else: return f"Could not parse date: {date_text}" except Exception as e: return f"Error parsing date: {e}" # Calculate new date if 'day' in unit: new_date = base_date + timedelta(days=amount) elif 'week' in unit: new_date = base_date + timedelta(weeks=amount) elif 'month' in unit: # Simplified month calculation new_month = base_date.month + amount new_year = base_date.year + (new_month - 1) // 12 new_month = ((new_month - 1) % 12) + 1 new_date = base_date.replace(year=new_year, month=new_month) elif 'year' in unit: new_date = base_date.replace(year=base_date.year + amount) return f"Date {amount} {unit} from {base_date.strftime('%Y-%m-%d')} is {new_date.strftime('%Y-%m-%d')}" # Format a date format_match = re.search(r'format\s+(.+?)\s+as\s+(.+)', query, re.IGNORECASE) if format_match: date_text = format_match.group(1).strip() format_spec = format_match.group(2).strip() # Parse the date if date_text.lower() in ['today', 'now']: date_obj = datetime.now() else: try: # Try various date formats for fmt in ['%Y-%m-%d', '%m/%d/%Y', '%d/%m/%Y', '%B %d, %Y']: try: date_obj = datetime.strptime(date_text, fmt) break except ValueError: continue else: return f"Could not parse date: {date_text}" except Exception as e: return f"Error parsing date: {e}" # Convert format specification to strftime format format_mapping = { 'YYYY': '%Y', 'YY': '%y', 'MM': '%m', 'DD': '%d', 'HH': '%H', 'mm': '%M', 'ss': '%S' } strftime_format = format_spec for key, value in format_mapping.items(): strftime_format = strftime_format.replace(key, value) return f"Formatted date: {date_obj.strftime(strftime_format)}" return "I couldn't understand the date calculation query." except Exception as e: return f"Error performing date calculation: {str(e)}" class DownloadFileTool(Tool): name = "download_file" description = "Downloads a file from a URL and saves it locally." inputs = { "url": { "type": "string", "description": "The URL to download from." }, "filename": { "type": "string", "description": "Optional filename to save as (default: derived from URL).", "default": None, "nullable": True } } output_type = "string" def forward(self, url: str, filename: str = None) -> str: try: # Parse URL to get filename if not provided if not filename: path = urlparse(url).path filename = os.path.basename(path) if not filename: # Generate a random name if we couldn't extract one import uuid filename = f"downloaded_{uuid.uuid4().hex[:8]}" # Create temporary file temp_dir = tempfile.gettempdir() filepath = os.path.join(temp_dir, filename) # Download the file response = requests.get(url, stream=True) response.raise_for_status() # Save the file with open(filepath, 'wb') as f: for chunk in response.iter_content(chunk_size=8192): f.write(chunk) return f"File downloaded to {filepath}. You can now analyze this file." except Exception as e: return f"Error downloading file: {str(e)}"