# Importing modules and functions from utils import fetch_wordpress_data, extract_text, generate_embeddings import chromadb, yaml from langchain_chroma import Chroma from langchain_community.embeddings.sentence_transformer import ( SentenceTransformerEmbeddings, ) from langchain_google_genai import ChatGoogleGenerativeAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.runnables import RunnableParallel, RunnablePassthrough from langchain.output_parsers import CommaSeparatedListOutputParser from langchain_core.output_parsers import StrOutputParser from dotenv import load_dotenv import argparse # Load environment variables from .env file load_dotenv() # Parse command-line arguments parser = argparse.ArgumentParser(description='Information retrieval from blog archives') parser.add_argument('--query', '-q', default="What are WordPress tutorials", type=str, help='What do you want to know...?', required=False) parser.add_argument('--chats', '-c', default=[("Hello", "Hey, How may i help you?")], type=list, help='Chats of the user', required=False) args = parser.parse_args() try: # Attempt to load configuration data from config.yaml file with open("./config.yaml", 'r') as file: config_data = yaml.safe_load(file) except Exception as e: # Raise exception if config.yaml file is not found raise Exception(f"Not able to find the file ./config.yaml") # Initialize Chroma database client client = chromadb.PersistentClient("./posts_db") collection_name = config_data['collection_name'] collection = client.get_collection(name=collection_name) # Initialize embedding function for sentence transformer embedding_function = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # Initialize Langchain Chroma retriever langchain_chroma = Chroma( client=client, collection_name=collection_name, embedding_function=embedding_function, ).as_retriever(n_results=1) # Initialize Chat Google Generative AI model model = ChatGoogleGenerativeAI(model="gemini-pro") def update_vector_database(collection, post_id, embeddings, text): """ Update the vector database with post ID, embeddings, and text. Args: collection: The collection in the database. post_id (str): The ID of the post. embeddings (list): List of embeddings generated from the post text. text (str): The text of the post. """ collection.upsert(ids=[str(post_id)], documents=[text], embeddings=[embeddings]) def fetch_existing_posts(collection): """ Fetch existing posts from the database. Args: collection: The collection in the database. Returns: list: List of existing posts. """ # Fetch existing posts from the database or any other storage existing_posts = collection.get() return existing_posts def update_embeddings_on_new_post(collection): """ Update embeddings for new posts fetched from WordPress data. Args: collection: The collection in the database. """ # Fetch existing posts from the database or any other storage existing_posts = fetch_existing_posts(collection) new_posts = fetch_wordpress_data(config_data['site_url']) # Compare old and new posts to find the difference # new_post_ids = set(str(post['id']) for post in new_posts) existing_post_ids = set(str(post_id) for post_id in existing_posts['ids']) new_posts_to_update = [post for post in new_posts if str(post['id']) not in existing_post_ids] print(new_posts_to_update) # Update embeddings for new posts for post in new_posts_to_update: # Extract text from post text = extract_text(post) # Generate embeddings for the post text embeddings = generate_embeddings(text) # Update vector database with post ID and embeddings update_vector_database(collection,post['id'], embeddings, text) def rag_generate_response(): """ Generate a prompt for generating reasoning steps for answering the user query. Returns: ChatPromptTemplate: The generated prompt template. """ template = """You are tasked with designing a prompt for generating reasoning steps for answering to the user_query in a website. Write a Prompt to generate a series of intermediate thoughts or reasoning steps to answer the query. Avoid providing specific solutions or examples, allowing the LLM to explore different approaches independently. Give the output as a list of steps. eg: [1,2,3,...] Question: {user_query} Previous_context : {previous_context} """ prompt = ChatPromptTemplate.from_template(template) # chain = ( # RunnableParallel({"user_query": RunnablePassthrough()}) # | prompt # | model # | CommaSeparatedListOutputParser() # ) # initial_response = chain.invoke(user_query) # print("Initial Response: ", initial_response) # return initial_response return prompt def develop_reasoning_steps(user_query, initial_prompt, previous_context): """ Develop reasoning steps based on the user query, initial prompt, and previous context. Args: user_query (str): The query from the user. initial_prompt (ChatPromptTemplate): The initial prompt template. previous_context (str): The previous context. Returns: list: List of thought steps. """ chain = ( RunnableParallel({"user_query": RunnablePassthrough(), "previous_context": RunnablePassthrough()}) | initial_prompt | model | CommaSeparatedListOutputParser() ) thought_steps = chain.invoke({"user_query" : user_query, "previous_context" : previous_context}) thought_steps = thought_steps[0].split('\n') print("thought_steps: ", thought_steps) return thought_steps # template = """You are a helpfull assistant which generates the thought steps used for generating a response to a query based on the relevant documents and the previous context. Generate thought steps on how to answer to the user's previous context with the relevant documents. This helps the LLM to answer in the next step accurately. I am giving the initial_response as relevant documents and previous context is the chat history. Now write the thought steps using the relavant documents, and the previous context on how to answer to the query. Thought steps are the sub questions and their answers asked using the query, context and previous context. Thought steps should be in the format Question: , Response: : # Relevant Document : {reasoning_step} # previous context: {previous_context} # """ # prompt = ChatPromptTemplate.from_template(template) # reason_chain = ( # RunnableParallel({"user_query": RunnablePassthrough(),"relevant_doc": RunnablePassthrough(), "previous_context": RunnablePassthrough()}) # | prompt # | model # | StrOutputParser() # ) # thought_steps = reason_chain.invoke({'user_query' : user_query, 'relevant_doc' : relevant_doc,'previous_context' : previous_context}) # return thought_steps def refine_response_based_on_thought_steps(user_query, thought_steps): """ Refine the response based on thought steps. Args: user_query (str): The query from the user. thought_steps (list): List of thought steps. Returns: str: Final refined response. """ retrieved_content = [] all_retrieved_content = "" for thought_step in thought_steps: # print(langchain_chroma.invoke(thought_step)) retrieved_content = langchain_chroma.invoke(thought_step) for i in retrieved_content: all_retrieved_content+=i.page_content all_retrieved_content+="\n" # print("--------------------------------------------------") # print("Retrieved: ", retrieved_content[0]) # print("Len Retrieved: ", len(retrieved_content)) # print("----------------------------") # print("All Retrieved Content: ",all_retrieved_content) # print("Len Retrieved: ", len(retrieved_content[0])) template = """You are a helpful assistant which answers the query from the context. If the context does not provide the answer simply reply I cannot answer this and give a suggestion to refer the website. DO NOT say that 'there is no information in the context' or 'the answer from the context is this.' phrases, instead give directly the solution or answer I cannot answer this and give a suggestion to refer the website or similar kind of text based on the context.: query : {user_query} context : {context} """ prompt = ChatPromptTemplate.from_template(template) reason_chain = ( RunnableParallel({'user_query': RunnablePassthrough(), 'context': RunnablePassthrough()}) | prompt | model | StrOutputParser() ) final_response = reason_chain.invoke({'user_query': user_query ,'context' : all_retrieved_content}) return final_response # Function to process the query with RAG + COT def process_query_with_chain_of_thought(user_query, previous_context): """ Process the user query using the RAG + COT approach. Args: user_query (str): The query from the user. previous_context (list): List of previous chat contexts. Returns: tuple: A tuple containing thought steps and final refined response. """ initial_response = rag_generate_response(user_query) # initial response is the prompt thought_steps = develop_reasoning_steps(user_query, initial_response, previous_context) final_response = refine_response_based_on_thought_steps(user_query,thought_steps) return thought_steps, final_response # Updating the embeddings and post content of the website into the vector store update_embeddings_on_new_post(collection) # Precessing the query from the user using the RAG + COT approach thought_steps, final_response = process_query_with_chain_of_thought(args.query, args.chats) print("Thought_steps : ",thought_steps) print("Final_response : ",final_response)