# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import librosa import torch import numpy as np def extract_mstft( audio_ref, audio_deg, fs=None, mid_freq=None, high_freq=None, method="cut", version="pwg", ): """Compute Multi-Scale STFT Distance (mstft) between the predicted and the ground truth audio. audio_ref: path to the ground truth audio. audio_deg: path to the predicted audio. fs: sampling rate. med_freq: division frequency for mid frequency parts. high_freq: division frequency for high frequency parts. method: "dtw" will use dtw algorithm to align the length of the ground truth and predicted audio. "cut" will cut both audios into a same length according to the one with the shorter length. version: "pwg" will use the computational version provided by ParallelWaveGAN. "encodec" will use the computational version provided by Encodec. """ # Load audio if fs != None: audio_ref, _ = librosa.load(audio_ref, sr=fs) audio_deg, _ = librosa.load(audio_deg, sr=fs) else: audio_ref, fs = librosa.load(audio_ref) audio_deg, fs = librosa.load(audio_deg) # Automatically choose mid_freq and high_freq if they are not given if mid_freq == None: mid_freq = fs // 6 if high_freq == None: high_freq = fs // 3 # Audio length alignment if len(audio_ref) != len(audio_deg): if method == "cut": length = min(len(audio_ref), len(audio_deg)) audio_ref = audio_ref[:length] audio_deg = audio_deg[:length] elif method == "dtw": _, wp = librosa.sequence.dtw(audio_ref, audio_deg, backtrack=True) audio_ref_new = [] audio_deg_new = [] for i in range(wp.shape[0]): ref_index = wp[i][0] deg_index = wp[i][1] audio_ref_new.append(audio_ref[ref_index]) audio_deg_new.append(audio_deg[deg_index]) audio_ref = np.array(audio_ref_new) audio_deg = np.array(audio_deg_new) assert len(audio_ref) == len(audio_deg) # Define loss function l1Loss = torch.nn.L1Loss(reduction="mean") l2Loss = torch.nn.MSELoss(reduction="mean") # Compute distance if version == "encodec": n_fft = 1024 mstft = 0 mstft_low = 0 mstft_mid = 0 mstft_high = 0 freq_resolution = fs / n_fft mid_freq_index = 1 + int(np.floor(mid_freq / freq_resolution)) high_freq_index = 1 + int(np.floor(high_freq / freq_resolution)) for i in range(5, 11): hop_length = 2**i // 4 win_length = 2**i spec_ref = librosa.stft( y=audio_ref, n_fft=n_fft, hop_length=hop_length, win_length=win_length ) spec_deg = librosa.stft( y=audio_deg, n_fft=n_fft, hop_length=hop_length, win_length=win_length ) mag_ref = np.abs(spec_ref) mag_deg = np.abs(spec_deg) mag_ref = torch.from_numpy(mag_ref) mag_deg = torch.from_numpy(mag_deg) mstft += l1Loss(mag_ref, mag_deg) + l2Loss(mag_ref, mag_deg) mag_ref_low = mag_ref[:mid_freq_index, :] mag_deg_low = mag_deg[:mid_freq_index, :] mstft_low += l1Loss(mag_ref_low, mag_deg_low) + l2Loss( mag_ref_low, mag_deg_low ) mag_ref_mid = mag_ref[mid_freq_index:high_freq_index, :] mag_deg_mid = mag_deg[mid_freq_index:high_freq_index, :] mstft_mid += l1Loss(mag_ref_mid, mag_deg_mid) + l2Loss( mag_ref_mid, mag_deg_mid ) mag_ref_high = mag_ref[high_freq_index:, :] mag_deg_high = mag_deg[high_freq_index:, :] mstft_high += l1Loss(mag_ref_high, mag_deg_high) + l2Loss( mag_ref_high, mag_deg_high ) mstft /= 6 mstft_low /= 6 mstft_mid /= 6 mstft_high /= 6 return mstft elif version == "pwg": fft_sizes = [1024, 2048, 512] hop_sizes = [120, 240, 50] win_sizes = [600, 1200, 240] audio_ref = torch.from_numpy(audio_ref) audio_deg = torch.from_numpy(audio_deg) mstft_sc = 0 mstft_sc_low = 0 mstft_sc_mid = 0 mstft_sc_high = 0 mstft_mag = 0 mstft_mag_low = 0 mstft_mag_mid = 0 mstft_mag_high = 0 for n_fft, hop_length, win_length in zip(fft_sizes, hop_sizes, win_sizes): spec_ref = torch.stft( audio_ref, n_fft, hop_length, win_length, return_complex=False ) spec_deg = torch.stft( audio_deg, n_fft, hop_length, win_length, return_complex=False ) real_ref = spec_ref[..., 0] imag_ref = spec_ref[..., 1] real_deg = spec_deg[..., 0] imag_deg = spec_deg[..., 1] mag_ref = torch.sqrt( torch.clamp(real_ref**2 + imag_ref**2, min=1e-7) ).transpose(1, 0) mag_deg = torch.sqrt( torch.clamp(real_deg**2 + imag_deg**2, min=1e-7) ).transpose(1, 0) sc_loss = torch.norm(mag_ref - mag_deg, p="fro") / torch.norm( mag_ref, p="fro" ) mag_loss = l1Loss(torch.log(mag_ref), torch.log(mag_deg)) mstft_sc += sc_loss mstft_mag += mag_loss freq_resolution = fs / n_fft mid_freq_index = 1 + int(np.floor(mid_freq / freq_resolution)) high_freq_index = 1 + int(np.floor(high_freq / freq_resolution)) mag_ref_low = mag_ref[:, :mid_freq_index] mag_deg_low = mag_deg[:, :mid_freq_index] sc_loss_low = torch.norm(mag_ref_low - mag_deg_low, p="fro") / torch.norm( mag_ref_low, p="fro" ) mag_loss_low = l1Loss(torch.log(mag_ref_low), torch.log(mag_deg_low)) mstft_sc_low += sc_loss_low mstft_mag_low += mag_loss_low mag_ref_mid = mag_ref[:, mid_freq_index:high_freq_index] mag_deg_mid = mag_deg[:, mid_freq_index:high_freq_index] sc_loss_mid = torch.norm(mag_ref_mid - mag_deg_mid, p="fro") / torch.norm( mag_ref_mid, p="fro" ) mag_loss_mid = l1Loss(torch.log(mag_ref_mid), torch.log(mag_deg_mid)) mstft_sc_mid += sc_loss_mid mstft_mag_mid += mag_loss_mid mag_ref_high = mag_ref[:, high_freq_index:] mag_deg_high = mag_deg[:, high_freq_index:] sc_loss_high = torch.norm( mag_ref_high - mag_deg_high, p="fro" ) / torch.norm(mag_ref_high, p="fro") mag_loss_high = l1Loss(torch.log(mag_ref_high), torch.log(mag_deg_high)) mstft_sc_high += sc_loss_high mstft_mag_high += mag_loss_high # Normalize distances mstft_sc /= len(fft_sizes) mstft_sc_low /= len(fft_sizes) mstft_sc_mid /= len(fft_sizes) mstft_sc_high /= len(fft_sizes) mstft_mag /= len(fft_sizes) mstft_mag_low /= len(fft_sizes) mstft_mag_mid /= len(fft_sizes) mstft_mag_high /= len(fft_sizes) # return ( # mstft_sc.numpy().tolist(), # mstft_sc_low.numpy().tolist(), # mstft_sc_mid.numpy().tolist(), # mstft_sc_high.numpy().tolist(), # mstft_mag.numpy().tolist(), # mstft_mag_low.numpy().tolist(), # mstft_mag_mid.numpy().tolist(), # mstft_mag_high.numpy().tolist(), # ) return mstft_sc.numpy().tolist() + mstft_mag.numpy().tolist()