# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch from models.base.base_trainer import BaseTrainer from models.tta.autoencoder.autoencoder_dataset import ( AutoencoderKLDataset, AutoencoderKLCollator, ) from models.tta.autoencoder.autoencoder import AutoencoderKL from models.tta.autoencoder.autoencoder_loss import AutoencoderLossWithDiscriminator from torch.optim import Adam, AdamW from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.nn import MSELoss, L1Loss import torch.nn.functional as F from torch.utils.data import ConcatDataset, DataLoader class AutoencoderKLTrainer(BaseTrainer): def __init__(self, args, cfg): BaseTrainer.__init__(self, args, cfg) self.cfg = cfg self.save_config_file() def build_dataset(self): return AutoencoderKLDataset, AutoencoderKLCollator def build_optimizer(self): opt_ae = torch.optim.AdamW(self.model.parameters(), **self.cfg.train.adam) opt_disc = torch.optim.AdamW( self.criterion.discriminator.parameters(), **self.cfg.train.adam ) optimizer = {"opt_ae": opt_ae, "opt_disc": opt_disc} return optimizer def build_data_loader(self): Dataset, Collator = self.build_dataset() # build dataset instance for each dataset and combine them by ConcatDataset datasets_list = [] for dataset in self.cfg.dataset: subdataset = Dataset(self.cfg, dataset, is_valid=False) datasets_list.append(subdataset) train_dataset = ConcatDataset(datasets_list) train_collate = Collator(self.cfg) # use batch_sampler argument instead of (sampler, shuffle, drop_last, batch_size) train_loader = DataLoader( train_dataset, collate_fn=train_collate, num_workers=self.args.num_workers, batch_size=self.cfg.train.batch_size, pin_memory=False, ) if not self.cfg.train.ddp or self.args.local_rank == 0: datasets_list = [] for dataset in self.cfg.dataset: subdataset = Dataset(self.cfg, dataset, is_valid=True) datasets_list.append(subdataset) valid_dataset = ConcatDataset(datasets_list) valid_collate = Collator(self.cfg) valid_loader = DataLoader( valid_dataset, collate_fn=valid_collate, num_workers=1, batch_size=self.cfg.train.batch_size, ) else: raise NotImplementedError("DDP is not supported yet.") # valid_loader = None data_loader = {"train": train_loader, "valid": valid_loader} return data_loader # TODO: check it... def build_scheduler(self): return None # return ReduceLROnPlateau(self.optimizer["opt_ae"], **self.cfg.train.lronPlateau) def write_summary(self, losses, stats): for key, value in losses.items(): self.sw.add_scalar(key, value, self.step) def write_valid_summary(self, losses, stats): for key, value in losses.items(): self.sw.add_scalar(key, value, self.step) def build_criterion(self): return AutoencoderLossWithDiscriminator(self.cfg.model.loss) def get_state_dict(self): if self.scheduler != None: state_dict = { "model": self.model.state_dict(), "optimizer_ae": self.optimizer["opt_ae"].state_dict(), "optimizer_disc": self.optimizer["opt_disc"].state_dict(), "scheduler": self.scheduler.state_dict(), "step": self.step, "epoch": self.epoch, "batch_size": self.cfg.train.batch_size, } else: state_dict = { "model": self.model.state_dict(), "optimizer_ae": self.optimizer["opt_ae"].state_dict(), "optimizer_disc": self.optimizer["opt_disc"].state_dict(), "step": self.step, "epoch": self.epoch, "batch_size": self.cfg.train.batch_size, } return state_dict def load_model(self, checkpoint): self.step = checkpoint["step"] self.epoch = checkpoint["epoch"] self.model.load_state_dict(checkpoint["model"]) self.optimizer["opt_ae"].load_state_dict(checkpoint["optimizer_ae"]) self.optimizer["opt_disc"].load_state_dict(checkpoint["optimizer_disc"]) if self.scheduler != None: self.scheduler.load_state_dict(checkpoint["scheduler"]) def build_model(self): self.model = AutoencoderKL(self.cfg.model.autoencoderkl) return self.model # TODO: train step def train_step(self, data): global_step = self.step optimizer_idx = global_step % 2 train_losses = {} total_loss = 0 train_states = {} inputs = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T) reconstructions, posterior = self.model(inputs) # train_stats.update(stat) train_losses = self.criterion( inputs=inputs, reconstructions=reconstructions, posteriors=posterior, optimizer_idx=optimizer_idx, global_step=global_step, last_layer=self.model.get_last_layer(), split="train", ) if optimizer_idx == 0: total_loss = train_losses["loss"] self.optimizer["opt_ae"].zero_grad() total_loss.backward() self.optimizer["opt_ae"].step() else: total_loss = train_losses["d_loss"] self.optimizer["opt_disc"].zero_grad() total_loss.backward() self.optimizer["opt_disc"].step() for item in train_losses: train_losses[item] = train_losses[item].item() return train_losses, train_states, total_loss.item() # TODO: eval step @torch.no_grad() def eval_step(self, data, index): valid_loss = {} total_valid_loss = 0 valid_stats = {} inputs = data["melspec"].unsqueeze(1) # (B, 80, T) -> (B, 1, 80, T) reconstructions, posterior = self.model(inputs) loss = F.l1_loss(inputs, reconstructions) valid_loss["loss"] = loss total_valid_loss += loss for item in valid_loss: valid_loss[item] = valid_loss[item].item() return valid_loss, valid_stats, total_valid_loss.item()