# Copyright (c) 2023 Amphion. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from modules.distributions.distributions import DiagonalGaussianDistribution def nonlinearity(x): # swish return x * torch.sigmoid(x) def Normalize(in_channels): return torch.nn.GroupNorm( num_groups=32, num_channels=in_channels, eps=1e-6, affine=True ) class Upsample2d(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Upsample1d(Upsample2d): def __init__(self, in_channels, with_conv): super().__init__(in_channels, with_conv) if self.with_conv: self.conv = torch.nn.Conv1d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) class Downsample2d(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) self.pad = (0, 1, 0, 1) else: self.avg_pool = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x): if self.with_conv: # bp: check self.avgpool and self.pad x = torch.nn.functional.pad(x, self.pad, mode="constant", value=0) x = self.conv(x) else: x = self.avg_pool(x) return x class Downsample1d(Downsample2d): def __init__(self, in_channels, with_conv): super().__init__(in_channels, with_conv) if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves # TODO: can we replace it just with conv2d with padding 1? self.conv = torch.nn.Conv1d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) self.pad = (1, 1) else: self.avg_pool = nn.AvgPool1d(kernel_size=2, stride=2) class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class ResnetBlock1d(ResnetBlock): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512 ): super().__init__( in_channels=in_channels, out_channels=out_channels, conv_shortcut=conv_shortcut, dropout=dropout, ) self.conv1 = torch.nn.Conv1d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) self.conv2 = torch.nn.Conv1d( out_channels, out_channels, kernel_size=3, stride=1, padding=1 ) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv1d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = torch.nn.Conv1d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) class Encoder2d(nn.Module): def __init__( self, *, ch, ch_mult=(1, 2, 4, 8), num_res_blocks, dropout=0.0, resamp_with_conv=True, in_channels, z_channels, double_z=True, **ignore_kwargs ): super().__init__() self.ch = ch self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d( in_channels, self.ch, kernel_size=3, stride=1, padding=1 ) in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, dropout=dropout ) ) block_in = block_out down = nn.Module() down.block = block if i_level != self.num_resolutions - 1: down.downsample = Downsample2d(block_in, resamp_with_conv) self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, dropout=dropout ) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, dropout=dropout ) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d( block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1, ) def forward(self, x): # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1]) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h) h = self.mid.block_2(h) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h # TODO: Encoder1d class Encoder1d(Encoder2d): ... class Decoder2d(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, dropout=0.0, resamp_with_conv=True, in_channels, z_channels, give_pre_end=False, **ignorekwargs ): super().__init__() self.ch = ch self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.in_channels = in_channels self.give_pre_end = give_pre_end # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,) + tuple(ch_mult) block_in = ch * ch_mult[self.num_resolutions - 1] # self.z_shape = (1,z_channels,curr_res,curr_res) # print("Working with z of shape {} = {} dimensions.".format( # self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d( z_channels, block_in, kernel_size=3, stride=1, padding=1 ) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, dropout=dropout ) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, dropout=dropout ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, dropout=dropout ) ) block_in = block_out up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample2d(block_in, resamp_with_conv) self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d( block_in, out_ch, kernel_size=3, stride=1, padding=1 ) def forward(self, z): self.last_z_shape = z.shape # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h) h = self.mid.block_2(h) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h # TODO: decoder1d class Decoder1d(Decoder2d): ... class AutoencoderKL(nn.Module): def __init__(self, cfg): super().__init__() self.cfg = cfg self.encoder = Encoder2d( ch=cfg.ch, ch_mult=cfg.ch_mult, num_res_blocks=cfg.num_res_blocks, in_channels=cfg.in_channels, z_channels=cfg.z_channels, double_z=cfg.double_z, ) self.decoder = Decoder2d( ch=cfg.ch, ch_mult=cfg.ch_mult, num_res_blocks=cfg.num_res_blocks, out_ch=cfg.out_ch, z_channels=cfg.z_channels, in_channels=None, ) assert self.cfg.double_z self.quant_conv = torch.nn.Conv2d(2 * cfg.z_channels, 2 * cfg.z_channels, 1) self.post_quant_conv = torch.nn.Conv2d(cfg.z_channels, cfg.z_channels, 1) self.embed_dim = cfg.z_channels def encode(self, x): h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) return posterior def decode(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) return dec def forward(self, input, sample_posterior=True): posterior = self.encode(input) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode(z) return dec, posterior def get_last_layer(self): return self.decoder.conv_out.weight