from flask import Flask, request, render_template, jsonify from flask_cors import CORS import keras import numpy as np from keras.preprocessing import image import io app = Flask(__name__) CORS(app) model = keras.models.load_model('Cats_vs_Dogs.model') @app.route('/') def index(): with open('index.html', 'r') as file: html_content = file.read() return html_content @app.route('/predict', methods=['POST']) def predict(): imagefile = request.files['imagefile'] # Read the image file into memory img_stream = imagefile.read() # Convert the image to grayscale and resize img = image.load_img(io.BytesIO(img_stream), color_mode='grayscale', target_size=(60, 60)) img_array = image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array /= 255.0 prediction = model.predict(img_array) predicted_class = "Dog" if prediction[0][1] > prediction[0][0] else "Cat" return jsonify({'prediction': predicted_class}) if __name__ == '__main__': app.run(debug=True)